These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5043316)

  • 1. [Kinetics of glucose uptake in erythrocytes. Effect of trans-concentration].
    Lacko L; Wittke B; Kromphardt H
    Eur J Biochem; 1972 Feb; 25(3):447-54. PubMed ID: 5043316
    [No Abstract]   [Full Text] [Related]  

  • 2. Hypoxanthine transport in human erythrocytes.
    Lassen UV
    Biochim Biophys Acta; 1967 Feb; 135(1):146-54. PubMed ID: 6031499
    [No Abstract]   [Full Text] [Related]  

  • 3. Lack of stereospecificity of glucose binding to human erythrocyte membrane protein upon reduction with sodium borohydride.
    Kahlenberg A
    Biochem Biophys Res Commun; 1969 Aug; 36(4):690-5. PubMed ID: 5809712
    [No Abstract]   [Full Text] [Related]  

  • 4. Evidence of high stability of the glucose transport carrier function in human red cell ghosts extensively washed in various media.
    Jung CY
    Arch Biochem Biophys; 1971 Sep; 146(1):215-26. PubMed ID: 5004123
    [No Abstract]   [Full Text] [Related]  

  • 5. The asymmetry of the facilitated transfer system for hexoses in human red cells and the simple kinetics of a two component model.
    Baker GF; Widdas WF
    J Physiol; 1973 May; 231(1):143-65. PubMed ID: 4715343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The L-leucine carrier in the human erythrocyte membrane.
    Hoare DG
    J Physiol; 1971 Oct; 218 Suppl():52P. PubMed ID: 5130632
    [No Abstract]   [Full Text] [Related]  

  • 7. Symposium on membrane transport. Passive exchanges.
    Widdas WF
    Proc R Soc Med; 1967 Apr; 60(4):319-21. PubMed ID: 6021655
    [No Abstract]   [Full Text] [Related]  

  • 8. [Changes in glucose transport in fresh human erythrocytes after longer incubation].
    Fuhrmann GF; Liggenstorfer P; Wilbrandt W
    Experientia; 1971 Dec; 27(12):1428-30. PubMed ID: 5144851
    [No Abstract]   [Full Text] [Related]  

  • 9. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM; Tarpley HL
    Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852
    [No Abstract]   [Full Text] [Related]  

  • 10. [Transport of xylitol across erythrocyte membrane].
    Yamada U; Yamada H; Hamada M
    Nihon Shonika Gakkai Zasshi; 1970 May; 74(5):533-8. PubMed ID: 5464710
    [No Abstract]   [Full Text] [Related]  

  • 11. An alternative to the carrier model for sugar transport across red cell membranes.
    Naftalin RJ
    Biomembranes; 1972; 3():117-26. PubMed ID: 4666509
    [No Abstract]   [Full Text] [Related]  

  • 12. The physiology of anion transport in red cells.
    Brahm J
    Prog Hematol; 1986; 14():1-21. PubMed ID: 2418461
    [No Abstract]   [Full Text] [Related]  

  • 13. Further effects of chlorpromazine on the hexose permeability of the human erythrocyte.
    Baker GF; Rogers HJ
    J Physiol; 1973 Aug; 232(3):597-608. PubMed ID: 4759682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of external adenine nucleotides by human red blood cells.
    Parker JC
    Am J Physiol; 1970 Jun; 218(6):1568-74. PubMed ID: 5446284
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of temperature on the competitive inhibition of sorbose transfer in human erythrocytes by glucose.
    Levine M; Levine S; Jones MN
    Biochim Biophys Acta; 1971 Feb; 225(2):291-300. PubMed ID: 5552812
    [No Abstract]   [Full Text] [Related]  

  • 16. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

  • 17. Inhibition of sugar transport in erythrocytes by fluorodinitrobenzene.
    Krupka RM
    Biochemistry; 1971 Mar; 10(7):1148-53. PubMed ID: 5553321
    [No Abstract]   [Full Text] [Related]  

  • 18. The role of unstirred layers in control of sugar movements across red cell membranes.
    Naftalin RJ
    Biochim Biophys Acta; 1971 Jun; 233(3):635-43. PubMed ID: 5113922
    [No Abstract]   [Full Text] [Related]  

  • 19. Carrier and non-carrier models for sugar transport in the human red blood cell.
    Lieb WR; Stein WD
    Biochim Biophys Acta; 1972 Apr; 265(2):187-207. PubMed ID: 4555470
    [No Abstract]   [Full Text] [Related]  

  • 20. The pH dependence of exchange transport of glucose in human erythrocytes.
    Lacko L; Wittke B; Geck P
    J Cell Physiol; 1972 Aug; 80(1):73-8. PubMed ID: 5071879
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.