These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 50439)

  • 21. The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction.
    Cho S; Meriney SD
    Eur J Neurosci; 2006 Jun; 23(12):3200-8. PubMed ID: 16820010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular and extracellular calcium ions in transmitter release at the neuromuscular synapse.
    Rahamimoff R; Erulkar SD; Lev-Tov A; Meiri H
    Ann N Y Acad Sci; 1978 Apr; 307():583-98. PubMed ID: 30380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction.
    Tsentsevitsky A; Kovyazina I; Nikolsky E; Bukharaeva E; Giniatullin R
    Neuroscience; 2013 Sep; 248():699-707. PubMed ID: 23806718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+].
    Talbot JD; David G; Barrett EF
    J Neurophysiol; 2003 Jul; 90(1):491-502. PubMed ID: 12672777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strontium and quantal release of transmitter at the neuromuscular junction.
    Dodge FA; Miledi R; Rahamimoff R
    J Physiol; 1969 Jan; 200(1):267-83. PubMed ID: 4387376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of uncoupling agents of oxidative phosphorylation on the spontaneous release of transmitter from insect motor nerve terminals.
    Washio H
    Comp Biochem Physiol C Comp Pharmacol; 1982; 72(2):369-73. PubMed ID: 6128159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristics of transmitter release at regenerating frog neuromuscular junctions.
    Dennis MJ; Miledi R
    J Physiol; 1974 Jun; 239(3):571-94. PubMed ID: 4152807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A quantitative description of tetanic and post-tetanic potentiation of transmitter release at the frog neuromuscular junction.
    Magleby KL; Zengel JE
    J Physiol; 1975 Feb; 245(1):183-208. PubMed ID: 165286
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iberiotoxin-induced block of Ca2+-activated K+ channels induces dihydropyridine sensitivity of ACh release from mammalian motor nerve terminals.
    Flink MT; Atchison WD
    J Pharmacol Exp Ther; 2003 May; 305(2):646-52. PubMed ID: 12606686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increase in transmitter release from motor nerve terminals induced by some pyridine derivatives.
    Montoya GA; Molgó J; Lemeignan M; Lechat P
    Acta Physiol Pharmacol Latinoam; 1984; 34(4):409-18. PubMed ID: 6242265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrins and modulation of transmitter release from motor nerve terminals by stretch.
    Chen BM; Grinnell AD
    Science; 1995 Sep; 269(5230):1578-80. PubMed ID: 7667637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In botulinum type A-poisoned frog motor endings ouabain induces phasic transmitter release through Na+-Ca2+ exchange.
    Molgo J; Angaut-Petit D; Thesleff S
    Brain Res; 1987 May; 410(2):385-9. PubMed ID: 3036311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of pH changes on the frequency of miniature end-plate potentials at the frog neuromuscular junction.
    Cohen I; Van Der Kloot W
    J Physiol; 1976 Nov; 262(2):401-14. PubMed ID: 11340
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of hydrogen sulfide (H2S) action on synaptic transmission at the mouse neuromuscular junction.
    Gerasimova E; Lebedeva J; Yakovlev A; Zefirov A; Giniatullin R; Sitdikova G
    Neuroscience; 2015 Sep; 303():577-85. PubMed ID: 26192092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynasore, an inhibitor of dynamin, increases the probability of transmitter release.
    Douthitt HL; Luo F; McCann SD; Meriney SD
    Neuroscience; 2011 Jan; 172():187-95. PubMed ID: 21056636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of imidazole on neuromuscular transmission and on synaptosomal calcium uptake in the rat.
    Ribeiro JA; Dominguez ML; Sá-Aimeida AM; Gonçalves MJ
    Arch Int Pharmacodyn Ther; 1981 Jun; 251(2):270-84. PubMed ID: 6269509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Noradrenaline augments tetanic potentiation of transmitter release by a calcium dependent process.
    Bergman H; Glusman S; Harris-Warrick RM; Kravitz EA; Nussinovitch I; Rahamimoff R
    Brain Res; 1981 Jun; 214(1):200-4. PubMed ID: 6263418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the effect of calcium on the frequency of miniature end-plate potentials at the frog neuromuscular junction.
    Matthews G; Wickelgren WO
    J Physiol; 1977 Mar; 266(1):91-101. PubMed ID: 192883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulatory role of intracellular sodium ions in neurotransmitter secretion.
    Melinek R; Lev-Tov A; Meiri H; Erulkar SD; Rahamimoff R
    Isr J Med Sci; 1982 Jan; 18(1):37-43. PubMed ID: 6121773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of calcium ions in tetanic and post-tetanic increase of miniature end-plate potential frequency.
    Erulkar SD; Rahamimoff R
    J Physiol; 1978 May; 278():501-11. PubMed ID: 209171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.