These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 504398)

  • 1. Ontogeny of equilibrium behavior in the rat, with special reference to the influence of vision and training.
    Dufour-Mallet A; Caston J; Parrad J
    Physiol Behav; 1979 May; 22(5):883-94. PubMed ID: 504398
    [No Abstract]   [Full Text] [Related]  

  • 2. Visual modulation of vestibularly-triggered air-righting in the rat.
    Pellis SM; Pellis VC; Morrissey TK; Teitelbaum P
    Behav Brain Res; 1989 Oct; 35(1):23-6. PubMed ID: 2803541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Role of perceptive training in overcoming the sequelae of visual deprivation in children with low vision].
    Grigor'eva LP
    Fiziol Cheloveka; 1996; 22(5):85-91. PubMed ID: 9053356
    [No Abstract]   [Full Text] [Related]  

  • 4. Monocular deprivation in the rat: evidence for an age-related defect in visual behavior.
    Rothblat LA; Schwartz ML; Kasdan PM
    Brain Res; 1978 Dec; 158(2):456-60. PubMed ID: 709375
    [No Abstract]   [Full Text] [Related]  

  • 5. Sensori-motor integration during stance: time adaptation of control mechanisms on adding or removing vision.
    Sozzi S; Monti A; De Nunzio AM; Do MC; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):172-89. PubMed ID: 20727610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superior short-term learning effect of visual and sensory organisation ability when sensory information is unreliable in adolescent rhythmic gymnasts.
    Chen HY; Chang HY; Ju YY; Tsao HT
    J Sports Sci; 2017 Jun; 35(12):1197-1203. PubMed ID: 27476743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-dependent orientation plasticity in the visual cortex of rats chronically exposed to a single orientation.
    O'Hashi K; Miyashita M; Tanaka S
    Neurosci Res; 2007 May; 58(1):86-90. PubMed ID: 17300846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A way of selectively degrading colour constancy demonstrates the experience dependence of colour vision.
    Brenner E; Cornelissen FW
    Curr Biol; 2005 Nov; 15(21):R864-6. PubMed ID: 16271854
    [No Abstract]   [Full Text] [Related]  

  • 9. Nonlinear postural control in response to visual translation.
    Ravaioli E; Oie KS; Kiemel T; Chiari L; Jeka JJ
    Exp Brain Res; 2005 Jan; 160(4):450-9. PubMed ID: 15480604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation to continuous perturbation of balance: progressive reduction of postural muscle activity with invariant or increasing oscillations of the center of mass depending on perturbation frequency and vision conditions.
    Schmid M; Bottaro A; Sozzi S; Schieppati M
    Hum Mov Sci; 2011 Apr; 30(2):262-78. PubMed ID: 21440318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Balance performance under varied conditions of sensory cues.
    Shick J
    Percept Mot Skills; 1982 Jun; 54(3):951-4. PubMed ID: 7099907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forces That Supplement Visuomotor Learning: A "Sensory Crossover" Experiment.
    Bittmann MF; Patton JL
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1109-1116. PubMed ID: 28113982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice.
    Hosang L; Yusifov R; Löwel S
    eNeuro; 2018; 5(1):. PubMed ID: 29379877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory white noise reduces postural fluctuations even in the absence of vision.
    Ross JM; Balasubramaniam R
    Exp Brain Res; 2015 Aug; 233(8):2357-63. PubMed ID: 25953650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNS recovery of function: serial lesion effects.
    Dru D; Walker JB
    Adv Psychobiol; 1976; 3():193-218. PubMed ID: 823802
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of head position and visual condition on balance control in inverted stance.
    Asseman F; Gahéry Y
    Neurosci Lett; 2005 Feb; 375(2):134-7. PubMed ID: 15670656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of visual information on postural control in patients with schizophrenia.
    Ahlgrén-Rimpiläinen A; Lauerma H; Kähkönen S; Aalto H; Pyykkö I; Palmgren K; Rimpiläinen I
    J Nerv Ment Dis; 2010 Aug; 198(8):601-3. PubMed ID: 20699728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postural control during quiet standing following cervical muscular fatigue: effects of changes in sensory inputs.
    Vuillerme N; Pinsault N; Vaillant J
    Neurosci Lett; 2005 Apr; 378(3):135-9. PubMed ID: 15781146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of low back pain on postural stability in younger women: influence of visual deprivation.
    Mann L; Kleinpaul JF; Pereira Moro AR; Mota CB; Carpes FP
    J Bodyw Mov Ther; 2010 Oct; 14(4):361-6. PubMed ID: 20850043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Behavioral and neuronal effects of visual deprivation in cats].
    Zernicki B
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1977; 27(4):709-14. PubMed ID: 919758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.