These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 5047178)

  • 1. Metabolic control mechanisms in mammalian systems. XVII. Thyroid hormone control of brain hexose monophosphate shunt enzymes during experimental cretinism.
    Schwark WS; Singhal RL; Ling GM
    Brain Res; 1972 Jul; 42(1):103-16. PubMed ID: 5047178
    [No Abstract]   [Full Text] [Related]  

  • 2. Glyceraldehyde-3-phosphate dehydrogenase activity in developing brain during experimental cretinism.
    Schwark WS; Singhal RL; Ling GM
    Biochim Biophys Acta; 1972 Jul; 273(2):308-17. PubMed ID: 5080320
    [No Abstract]   [Full Text] [Related]  

  • 3. The quantitative histochemistry of enzymes of the pentose phosphate pathway in the central nervous system of the rat.
    Kauffman FC
    J Neurochem; 1972 Jan; 19(1):1-9. PubMed ID: 5009897
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolic control mechanisms in mammalian systems. 8. Thyroid hormone control of alpha-glycerophosphate dehydrogenase activity in rat cerebral cortex and cerebellum.
    Schwark WS; Singhal RL; Ling GM
    Can J Physiol Pharmacol; 1971 Jun; 49(6):598-607. PubMed ID: 5088464
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolic control mechanisms in mammalian systems. Regulation of key glycolytic enzymes in developing brain during experimental cretinism.
    Schwark WS; Singhal RL; Ling GM
    J Neurochem; 1972 Apr; 19(4):1171-82. PubMed ID: 4259764
    [No Abstract]   [Full Text] [Related]  

  • 6. The glucose 6-phosphate metabolic crossroads in brain. Studies at the enzyme level.
    Vallejo CG; Marco R; Sebastián J
    Arch Biochem Biophys; 1971 Nov; 147(1):41-8. PubMed ID: 4398889
    [No Abstract]   [Full Text] [Related]  

  • 7. Glycolytic enzymes in human brain.
    Robinson N; Phillips BM
    Biochem J; 1964 Aug; 92(2):254-9. PubMed ID: 5838069
    [No Abstract]   [Full Text] [Related]  

  • 8. Phylogenetic changes in the proportions of two kinds of lactate dehydrogenase in primate brain regions.
    Goodman M; Syner FN; Stimson CW; Rankin JJ
    Brain Res; 1969 Jul; 14(2):447-59. PubMed ID: 4978526
    [No Abstract]   [Full Text] [Related]  

  • 9. Huntington's chorea: post mortem activity of enzymes involved in cerebral glucose metabolism.
    Bird ED; Gale JS; Spokes EG
    J Neurochem; 1977 Sep; 29(3):539-45. PubMed ID: 142821
    [No Abstract]   [Full Text] [Related]  

  • 10. Thyroid hormone control of serotonin in developing rat brain.
    Schwark WS; Keesey RR
    Res Commun Chem Pathol Pharmacol; 1975 Jan; 10(1):37-50. PubMed ID: 1124320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Histo-enzymological studies of the metabolism of glucides in the neuroglia. II. Phosphorylase and oxido-reduction enzymes in the spinal cord and dorsal root ganglia of the rabbit].
    Sotelo C
    Arch Anat Microsc Morphol Exp; 1966; 55(4):571-602. PubMed ID: 5972963
    [No Abstract]   [Full Text] [Related]  

  • 12. [The hexose monophosphate shunt in the liver of premature infants (glucose-6-phosphate-dehydrogenase and 6-phosphogluconate-dehydrogenase activities)].
    Cordone G; Gemme G; Moscatelli P; Fregonese B
    Minerva Pediatr; 1968 Jul; 20(29):1479-83. PubMed ID: 5744559
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of thyroid hormones and cyclic AMP on some lipogenic enzymes of the fat cell.
    Correze C; Berriche S; Tamayo L; Nunez J
    Eur J Biochem; 1982 Feb; 122(2):387-92. PubMed ID: 6277635
    [No Abstract]   [Full Text] [Related]  

  • 14. Age-related changes in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the subcellular fractions from the rat brain and the effect of dimethylaminoethanol.
    Roy D; Singh R
    Biochem Int; 1983 Jul; 7(1):43-53. PubMed ID: 6679337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the response characteristics of four lipogenic enzymes to 3,5,3'-triiodothyronine administration: evidence for variable degrees of amplification of the nuclear 3,5,3'-triiodothyronine signal.
    Mariash CN; Kaiser FE; Oppenheimer JH
    Endocrinology; 1980 Jan; 106(1):22-7. PubMed ID: 6243097
    [No Abstract]   [Full Text] [Related]  

  • 16. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer's disease may reflect oxidative stress.
    Martins RN; Harper CG; Stokes GB; Masters CL
    J Neurochem; 1986 Apr; 46(4):1042-5. PubMed ID: 3950618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choline acetyltransferase activity of human brain tissue during development and at maturity.
    Bull G; Hebb C; Ratković D
    J Neurochem; 1970 Oct; 17(10):1505-16. PubMed ID: 4990562
    [No Abstract]   [Full Text] [Related]  

  • 18. [Studies of the behavior of the enzymes of the "shunt" of hexose monophosphate in presence of miotic substances].
    Calabria GA; Castellazzo R
    Boll Soc Ital Biol Sper; 1967 Sep; 43(18):1190-4. PubMed ID: 4383717
    [No Abstract]   [Full Text] [Related]  

  • 19. Activation of hexose monophosphate pathway in brain by electrical stimulation in vitro.
    Kimura H; Naito K; Nakagawa K; Kuriyama K
    J Neurochem; 1974 Jul; 23(1):79-84. PubMed ID: 4152759
    [No Abstract]   [Full Text] [Related]  

  • 20. Hexose monophosphate shunt dehydrogenases in the sea urchin and the frog: comparison of some functional properties of the enzymes in vitro.
    Broyles RH; Strittmatter CF
    Comp Biochem Physiol B; 1977; 57(3):249-55. PubMed ID: 318144
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.