These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 5050978)

  • 1. Interaction of biguanides with mitochondrial and synthetic membranes.
    Schäfer G; Bojanowski D
    Eur J Biochem; 1972 May; 27(2):364-75. PubMed ID: 5050978
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of biguanides with mitochondrial and synthetic membranes. The role of phospholipids as natural binding sites.
    Schäfer G
    Eur J Biochem; 1974 Jun; 45(1):57-66. PubMed ID: 4473033
    [No Abstract]   [Full Text] [Related]  

  • 3. Interaction of biguanides with mitochondrial and synthetic membranes. Effects on ion conductance of mitochondrial membranes and electrical properties of phospholipid bilayers.
    Schäfer G; Rieger E
    Eur J Biochem; 1974 Aug; 46(3):613-23. PubMed ID: 4852501
    [No Abstract]   [Full Text] [Related]  

  • 4. Anilinonaphthalenesulfonate fluorescence changes induced by non-emzymatic generation of membrane potential in mitochondria and submitochondrial particles.
    Jasaitis AA; Kuliene VV; Skulachev VP
    Biochim Biophys Acta; 1971 Apr; 234(1):177-81. PubMed ID: 5105364
    [No Abstract]   [Full Text] [Related]  

  • 5. Studies on the fluorescence and binding of 8-anilino-1-naphthalene sulfonate by submitochondrial particles.
    Harris RA
    Arch Biochem Biophys; 1971 Dec; 147(2):436-45. PubMed ID: 5136095
    [No Abstract]   [Full Text] [Related]  

  • 6. Some principle effects of bongkrekic acid on the binding of adenine nucleotides to mitochondrial membranes.
    Erdelt H; Weidemann MJ; Buchholz M; Klingenberg M
    Eur J Biochem; 1972 Oct; 30(1):107-22. PubMed ID: 5086600
    [No Abstract]   [Full Text] [Related]  

  • 7. The fluorescence behaviour of 1-anilino-8-naphthalene sulphonate in phospholipid and natural membranes.
    Badley RA; Schneider H; Martin WG
    Biochem Biophys Res Commun; 1972 Dec; 49(5):1292-9. PubMed ID: 4345674
    [No Abstract]   [Full Text] [Related]  

  • 8. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids.
    Hinkle PC; Kim JJ; Racker E
    J Biol Chem; 1972 Feb; 247(4):1338-9. PubMed ID: 4334497
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphate acceptor specificity during oxidative phosphorylation in submitochondrial particles.
    Vallin I; Lundberg P
    Biochim Biophys Acta; 1972 Feb; 256(2):179-90. PubMed ID: 4335833
    [No Abstract]   [Full Text] [Related]  

  • 10. The effects of electrolytes on the interaction of cationic dyes with energized mitochondrial fragments.
    Dell'Antone P; Frigeri L; Azzone GF
    Eur J Biochem; 1973 May; 34(3):448-54. PubMed ID: 4715655
    [No Abstract]   [Full Text] [Related]  

  • 11. Surface potential and the interaction of weakly acidic uncouplers of oxidative phosphorylation with liposomes and mitochondria.
    Bakker EP; Arents JC; Hoebe JP; Terada H
    Biochim Biophys Acta; 1975 Jun; 387(3):491-506. PubMed ID: 237541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding changes and apparent pK a shifts of bromthymol blue as tools for mitochondrial reactions.
    Colonna R; Dell'Antone P; Felice Azzone G
    Arch Biochem Biophys; 1972 Jul; 151(1):295-303. PubMed ID: 5044520
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of bilirubin on mitochondrial reactions.
    Mustafa MG; Cowger ML; King TE
    J Biol Chem; 1969 Dec; 244(23):6403-14. PubMed ID: 4982202
    [No Abstract]   [Full Text] [Related]  

  • 14. Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition.
    Davidoff F
    J Biol Chem; 1971 Jun; 246(12):4017-27. PubMed ID: 5561472
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of guanidine derivatives on mitochondrial function. Ca2+ uptake and release.
    Davidoff F
    J Biol Chem; 1974 Oct; 249(20):6406-15. PubMed ID: 4418697
    [No Abstract]   [Full Text] [Related]  

  • 16. The membrane structure studied with cationic dyes. 1. The binding of cationic dyes to submitochondrial particles and the question of the polarity of the ion-translocation mechanism.
    Dell'Antone P; Colonna R; Azzone GF
    Eur J Biochem; 1972 Jan; 24(3):553-65. PubMed ID: 5058599
    [No Abstract]   [Full Text] [Related]  

  • 17. Translocation of protons and potassium ions across the mitochondrial membrane of respiring and respiration-deficient yeasts.
    Kovac L; Groot GS; Racker E
    Biochim Biophys Acta; 1972 Jan; 256(1):55-65. PubMed ID: 4550631
    [No Abstract]   [Full Text] [Related]  

  • 18. Reconstitution of the third site of oxidative phosphorylation.
    Racker E; Kandrach A
    J Biol Chem; 1971 Nov; 246(22):7069-71. PubMed ID: 4331205
    [No Abstract]   [Full Text] [Related]  

  • 19. Binding of propranolol and chlorpromazine by mitochondrial membranes.
    Huunan-Seppälä A
    Acta Chem Scand; 1972; 26(7):2713-33. PubMed ID: 4265422
    [No Abstract]   [Full Text] [Related]  

  • 20. Construction of mitochondrial H+ -transporting system in proteoliposomes.
    Shchipakin V; Chuchlova E; Evtodienko Y
    Biochem Biophys Res Commun; 1976 Mar; 69(1):123-7. PubMed ID: 4070
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.