BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 5053288)

  • 1. The potential of cervical primary afferents to sprout in the spinal nucleus of V following long term trigeminal denervation.
    Kerr FW
    Brain Res; 1972 Aug; 43(2):547-60. PubMed ID: 5053288
    [No Abstract]   [Full Text] [Related]  

  • 2. Central relationships of trigeminal and cervical primary afferents in the spinal cord and medulla.
    Kerr FW
    Brain Res; 1972 Aug; 43(2):561-72. PubMed ID: 5053289
    [No Abstract]   [Full Text] [Related]  

  • 3. Neuroplasticity of primary afferents in the neo-natal cat and some results of early deafferentation of the trigeminal spinal nucleus.
    Kerr FW
    J Comp Neurol; 1975 Oct; 163(3):305-27. PubMed ID: 1176642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulbar inhibition of spinal and supraspinal sympathetic reflex discharges.
    Kirchner F; Sato A; Weidinger H
    Pflugers Arch; 1971; 326(4):324-33. PubMed ID: 5105993
    [No Abstract]   [Full Text] [Related]  

  • 5. Nerve growth factor receptor (p75)-immunoreactivity in the normal adult feline trigeminal system and following retrogasserian rhizotomy.
    Henry MA; Westrum LE; Bothwell M; Johnson LR
    J Comp Neurol; 1993 Sep; 335(3):425-36. PubMed ID: 8227529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of gracile nucleus: time distribution of activity in presynaptic and postsynaptic elements.
    Whitehorn D; Bromberg MB; Howe JF; Putnam JE; Burgess PR
    Exp Neurol; 1972 Nov; 37(2):312-21. PubMed ID: 4637953
    [No Abstract]   [Full Text] [Related]  

  • 7. Observations on the frog dorsal column nucleus.
    Davidoff RA; Silvey GE; Gulley RL
    Mt Sinai J Med; 1974; 41(1):88-92. PubMed ID: 4361053
    [No Abstract]   [Full Text] [Related]  

  • 8. Electrophysiologic evidence that neither sprouting nor neuronal hyperactivity occur following long term trigeminal or cervical primary deafferentation.
    Beckermann SB; Kerr FW
    Exp Neurol; 1976 Feb; 50(2):427-38. PubMed ID: 1248559
    [No Abstract]   [Full Text] [Related]  

  • 9. [Effect of electric stimulation of brain stem structures on dorsal root potentials and on depolarization of spinal primary afferents].
    Ignatov IuD
    Fiziol Zh SSSR Im I M Sechenova; 1971 Nov; 57(11):1607-15. PubMed ID: 5158544
    [No Abstract]   [Full Text] [Related]  

  • 10. Positive dorsal root potentials produced by stimulaton of small diameter muscle afferents.
    Mendell L
    Brain Res; 1970 Mar; 18(2):375-9. PubMed ID: 4252038
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrophysiological evidence for an input to lateral reticular nucleus from collaterals of dorsal spinocerebellar and cuneocerebellar fibers.
    Burton JE; Bloedel JR; Gregory RS
    J Neurophysiol; 1971 Sep; 34(5):885-97. PubMed ID: 4328960
    [No Abstract]   [Full Text] [Related]  

  • 12. [Effect of non-inhalation narcotics on stimulation of transmission in the cortico-spinal system].
    Maĭskiĭ VV
    Farmakol Toksikol; 1972; 35(2):164-8. PubMed ID: 4401790
    [No Abstract]   [Full Text] [Related]  

  • 13. Degeneration of the primary snout sensory afferents in the cervical spinal cords following the infraorbital nerve transection in some mammals.
    Chang CM; Kubota K; Lee MS; Iseki H; Sonoda Y; Narita N; Shibanai S; Nagae K; Ohkubo K
    Anat Anz; 1988; 166(1-5):43-51. PubMed ID: 3189847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory effects in the cuneate nucleus produced by vago-aortic afferent fibers.
    Gahery Y; Vigier D
    Brain Res; 1974 Jul; 75(2):241-59. PubMed ID: 4366859
    [No Abstract]   [Full Text] [Related]  

  • 15. The effects of single and repetitive electrical stimulation of spinal afferent nerves and central nervous structures on the sympathetic nervous system.
    Kirchner F
    Acta Physiol Pol; 1973; 24(1):123-7. PubMed ID: 4716334
    [No Abstract]   [Full Text] [Related]  

  • 16. Changes in the synapses of the spinal trigeminal nucleus after ipsilateral rhizotomy.
    Westrum LE; Black RG
    Brain Res; 1968 Dec; 11(3):706-9. PubMed ID: 5712020
    [No Abstract]   [Full Text] [Related]  

  • 17. Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical afferents.
    Rustioni A; Sotelo C
    J Comp Neurol; 1974 Jun; 155(4):441-68. PubMed ID: 4847733
    [No Abstract]   [Full Text] [Related]  

  • 18. Characteristics and distribution of spinal focal synaptic potentials generated by group II muscle afferents.
    Fu TC; Santini M; Schomburg ED
    Acta Physiol Scand; 1974 Jul; 91(3):298-313. PubMed ID: 4367540
    [No Abstract]   [Full Text] [Related]  

  • 19. Synaptic actions of vagal afferents on facial motoneurons in the cat.
    Tanaka T; Asahara T
    Brain Res; 1981 May; 212(1):188-93. PubMed ID: 7225856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terminals of single Ia fibers: location, density, and distribution within a pool of 300 homonymous motoneurons.
    Mendell LM; Henneman E
    J Neurophysiol; 1971 Jan; 34(1):171-87. PubMed ID: 5540577
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.