These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 5054871)
1. Extended Hückel calculations on polypeptide chains. IV. The phy-psi energy surface for a tetrapeptide of poly-L-alanine. Rossi AR; David CW; Schor R J Phys Chem; 1972 Sep; 76(19):2793-5. PubMed ID: 5054871 [No Abstract] [Full Text] [Related]
2. Extended Hückel calculations on polypeptide chains. II. The phi-psi energy surface for a tetrapeptide of glycine. Rossi AR; David CW; Schor R J Phys Chem; 1970 Dec; 74(26):4551-5. PubMed ID: 5494902 [No Abstract] [Full Text] [Related]
3. Conformation of histidine model peptides. I. Conformational energy calculations for L-alanyl-L-histidine diketopiperazine. Grebow PE; Hooker TM Biopolymers; 1974 Nov; 13(11):2349-66. PubMed ID: 4429787 [No Abstract] [Full Text] [Related]
4. Monte Carlo calculations on polypeptide chains. VIII. Distribution functions for the end-to-end distance and radius of gyration for hard-sphere models of randomly coiling poly(glycine) and poly(L-alanine). Neves DE; Scott RA Macromolecules; 1975; 8(3):267-71. PubMed ID: 1152525 [TBL] [Abstract][Full Text] [Related]
5. Free-energy calculations of the interactions of helical poly(L-proline) with water. Krimm S; Venkatachalam CM Proc Natl Acad Sci U S A; 1971 Oct; 68(10):2468-71. PubMed ID: 5289879 [TBL] [Abstract][Full Text] [Related]
6. Studies of the dimensions of oligopeptides by singlet-singlet energy, transfer and theoretical calculations. I. Influence of glycine on the dimensions of tetrapeptides. Guillard R; Leclerc M; Loffet A; Leonis J; Wilmet B; Englert A Macromolecules; 1975; 8(2):134-40. PubMed ID: 1127985 [TBL] [Abstract][Full Text] [Related]
7. A CNDO-2 calculation on the helical conformations of a tetrapeptide of glycine. 3. The phi-psi energy surface. Schor R; Stymne H; Wettermark G; David CW J Phys Chem; 1972 Mar; 76(5):670-2. PubMed ID: 5061436 [No Abstract] [Full Text] [Related]
8. Thermal and charge-induced coil to -helix transition of poly-L-glutamic acid and random L-glutamic acid-L-alanine copolymers. Warashina A; Ikegami A Biopolymers; 1972 Mar; 11(3):529-47. PubMed ID: 5016115 [No Abstract] [Full Text] [Related]
9. Minimization of polypeptide energy. VII. Second derivatives and statistical weights of energy minima for deca-L-alanine. Gibson KD; Scheraga HA Proc Natl Acad Sci U S A; 1969 Jun; 63(2):242-5. PubMed ID: 5257120 [TBL] [Abstract][Full Text] [Related]
10. Energy transfer in poly-L-tyrosine as a function of the degree of ionization of the phenolic hydroxyls. IV. Calculations of theoretical transfer rates. ten Bosch JJ; Knopp JA Biochim Biophys Acta; 1969; 188(2):173-84. PubMed ID: 5823021 [No Abstract] [Full Text] [Related]
11. Calculations of the phi-psi conformational contour maps for N-acetyl alanine N'-methyl amide and of the characteristic ratios of poly-L-alanine using various molecular mechanics forcefields. Lee CH; Zimmerman SS J Biomol Struct Dyn; 1995 Oct; 13(2):201-18. PubMed ID: 8579782 [TBL] [Abstract][Full Text] [Related]
12. New tubular single-stranded helix of poly-L-amino acids suggested by molecular mechanics calculations: I. Homopolypeptides in isolated environments. Monoi H Biophys J; 1995 Sep; 69(3):1130-41. PubMed ID: 8519967 [TBL] [Abstract][Full Text] [Related]
13. Moments and distribution functions for polypeptide chains. Poly-L-alanine. Conrad JC; Flory PJ Macromolecules; 1976; 9(1):41-7. PubMed ID: 1249990 [TBL] [Abstract][Full Text] [Related]
14. Hairpin bend and interhelical interactions in -helical poly(L-alanine) in water. Silverman DN; Scheraga HA Arch Biochem Biophys; 1972 Dec; 153(2):449-56. PubMed ID: 4662091 [No Abstract] [Full Text] [Related]
15. Ab initio study of alanine polypeptide chain twisting. Solov'yov IA; Yakubovich AV; Solov'yov AV; Greiner W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021916. PubMed ID: 16605371 [TBL] [Abstract][Full Text] [Related]
16. Fluctuations and mechanical strength of alpha-helices of polyglycine and poly(L-alanine). Suezaki Y; Go N Biopolymers; 1976 Nov; 15(11):2137-53. PubMed ID: 990399 [No Abstract] [Full Text] [Related]
17. Helical structures of poly(D-L-peptides). A conformational energy analysis. Colonna-Cesari F; Premilat S; Heitz F; Spach G; Lotz B Macromolecules; 1977; 10(6):1284-8. PubMed ID: 926823 [TBL] [Abstract][Full Text] [Related]
18. Minimization of polypeptide energy. 8. Application of the deflation technique to a dipeptide. Crippen GM; Scheraga HA Proc Natl Acad Sci U S A; 1969 Sep; 64(1):42-9. PubMed ID: 5263023 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic parameters of helix-random coil transitions in polypeptide chains. IV. Random copolymers of L-alanine with L-glutamic acid. Bychkova VE; Ptitsyn OB Mol Biol (Mosk); 1976; 10(4):756-61. PubMed ID: 15214 [TBL] [Abstract][Full Text] [Related]
20. Energy-minimized conformation of gramicidin-like channels. II. Periodicity of the lowest energy conformation of an infinitely long poly-(L,D)-alanine beta 6.3-helix. Monoi H Biophys J; 1993 Nov; 65(5):1828-36. PubMed ID: 7507715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]