These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 5056958)

  • 1. Anomalous reactances in electrodiffusion systems.
    Sandblom J
    Biophys J; 1972 Sep; 12(9):1118-31. PubMed ID: 5056958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodiffusion kinetics of ionic transport in a simple membrane channel.
    Valent I; Petrovič P; Neogrády P; Schreiber I; Marek M
    J Phys Chem B; 2013 Nov; 117(46):14283-93. PubMed ID: 24164274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical solution of steady-state electrodiffusion equations for a simple membrane.
    Arndt RA; Bond JD; Roper LD
    Biophys J; 1971 Mar; 11(3):265-80. PubMed ID: 5573369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent density functional theory for ion diffusion in electrochemical systems.
    Jiang J; Cao D; Jiang DE; Wu J
    J Phys Condens Matter; 2014 Jul; 26(28):284102. PubMed ID: 24920008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state electrodiffusion. Scaling, exact solution for ions of one charge, and the phase plane.
    Leuchtag HR; Swihart JC
    Biophys J; 1977 Jan; 17(1):27-46. PubMed ID: 831855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moderately nonlinear diffuse-charge dynamics under an ac voltage.
    Stout RF; Khair AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032305. PubMed ID: 26465471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.
    Horno J; González-Caballero F; González-Fernández CF
    Eur Biophys J; 1990; 17(6):307-13. PubMed ID: 2307138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of space charge on the ionic currents through biological membranes.
    Ruppersberg JP; Rüdel R
    J Theor Biol; 1988 Feb; 130(4):431-45. PubMed ID: 2460705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrodiffusion of ions approaching the mouth of a conducting membrane channel.
    Peskoff A; Bers DM
    Biophys J; 1988 Jun; 53(6):863-75. PubMed ID: 2456103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion layer caused by local ionic transmembrane fluxes.
    Marhl M; Brumen M; Glaser R; Heinrich R
    Pflugers Arch; 1996; 431(6 Suppl 2):R259-60. PubMed ID: 8739363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic electric fields and proton diffusion in immobilized protein membranes. Effects of electrolytes and buffers.
    Zabusky NJ; Deem GS
    Biophys J; 1979 Jan; 25(1):1-15. PubMed ID: 233570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity analysis of the Poisson Nernst-Planck equations: a finite element approximation for the sensitive analysis of an electrodiffusion model.
    Dione I; Doyon N; Deteix J
    J Math Biol; 2019 Jan; 78(1-2):21-56. PubMed ID: 30187223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dielectric layers on estimates of diffusion coefficients and concentrations of ions from impedance spectroscopy.
    Khazimullin MV; Lebedev YA
    Phys Rev E; 2019 Dec; 100(6-1):062601. PubMed ID: 31962391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of effective dielectric constant to the Poisson-Nernst-Planck model.
    Sawada A
    Phys Rev E; 2016 May; 93(5):052608. PubMed ID: 27300952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ionic polarizability on electrodiffusion in lipid bilayer membranes.
    Bradshaw RW; Robertson CR
    J Membr Biol; 1975 Dec; 25(1-2):93-114. PubMed ID: 1214289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
    Urtenov MA; Kirillova EV; Seidova NM; Nikonenko VV
    J Phys Chem B; 2007 Dec; 111(51):14208-22. PubMed ID: 18052144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An exact constant-field solution for a simple membrane.
    Arndt RA; Bond JD; Roper LD
    Biophys J; 1970 Dec; 10(12):1149-53. PubMed ID: 5489778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liquid junction potentials calculated from numerical solutions of the Nernst-Planck and Poisson equations.
    Riveros OJ; Croxton TL; Armstrong WM
    J Theor Biol; 1989 Sep; 140(2):221-30. PubMed ID: 2482392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.