These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 5057465)

  • 1. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation.
    Waterson RM; Hill RL
    J Biol Chem; 1972 Aug; 247(16):5258-65. PubMed ID: 5057465
    [No Abstract]   [Full Text] [Related]  

  • 2. Long chain enoyl coenzyme A hydratase from pig heart.
    Schulz H
    J Biol Chem; 1974 May; 249(9):2704-9. PubMed ID: 4828315
    [No Abstract]   [Full Text] [Related]  

  • 3. Purification and properties of pig heart crotonase and the presence of short chain and long chain enoyl coenzyme A hydratases in pig and guinea pig tissues.
    Fong JC; Schulz H
    J Biol Chem; 1977 Jan; 252(2):542-7. PubMed ID: 833142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enoyl coenzyme A hydratase (crotonase). Enhancement of the rate of hydration of crotonylpantetheine by coenzyme A and related compounds.
    Waterson RM; Hass GM; Hill RL
    J Biol Chem; 1972 Aug; 247(16):5252-7. PubMed ID: 5066570
    [No Abstract]   [Full Text] [Related]  

  • 5. Purification and characterization of crotonase from Clostridium acetobutylicum.
    Waterson RM; Castellino FJ; Hass GM; Hill RL
    J Biol Chem; 1972 Aug; 247(16):5266-71. PubMed ID: 5057466
    [No Abstract]   [Full Text] [Related]  

  • 6. Influence of adenosine and nagarse on palmitoly-CoA synthese in rat heart and liver mitochondria.
    De Jong JW
    Biochim Biophys Acta; 1971 Sep; 245(2):288-98. PubMed ID: 5160740
    [No Abstract]   [Full Text] [Related]  

  • 7. Dual action of 2-decynoyl coenzyme A: inhibitor of hepatic mitochondrial trans-2-enoyl coenzyme A reductase and peroxisomal bifunctional protein and substrate for the mitochondrial beta-oxidation system.
    Nagi MN; Cook L; Laguna JC; Cinti DL
    Arch Biochem Biophys; 1988 Nov; 267(1):1-12. PubMed ID: 3058034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bovine liver crotonase. Substrate analogs and chemical modification of cysteinyl residues.
    Steinman HM; Hill RL
    J Biol Chem; 1973 Feb; 248(3):892-900. PubMed ID: 4684712
    [No Abstract]   [Full Text] [Related]  

  • 9. Intramitochondrial localization of palmityl-CoA dehydrogenase, beta-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase in guinea-pig heart.
    Wit-Peeters EM; Scholte HR; van den Akker F; de Nie I
    Biochim Biophys Acta; 1971 Feb; 231(1):23-31. PubMed ID: 4323009
    [No Abstract]   [Full Text] [Related]  

  • 10. Fatty acid oxidation in embryonic chick tissues.
    Pugh E; Sidbury JB
    Biochim Biophys Acta; 1971 Sep; 239(3):376-83. PubMed ID: 5113500
    [No Abstract]   [Full Text] [Related]  

  • 11. Multiple forms of fumarase of pig heart.
    Lin YC; Scott CF; Cohen LH
    Arch Biochem Biophys; 1971 Jun; 144(2):741-8. PubMed ID: 5569909
    [No Abstract]   [Full Text] [Related]  

  • 12. Bovine liver crotonase (enoyl coenzyme A hydratase). EC 4.2.1.17 L-3-hydroxyacyl-CoA hydrolyase.
    Steinman HM; Hill RL
    Methods Enzymol; 1975; 35():136-51. PubMed ID: 1121275
    [No Abstract]   [Full Text] [Related]  

  • 13. On rate-controlling factors of long chain fatty acid oxidation.
    Pande SV
    J Biol Chem; 1971 Sep; 246(17):5384-90. PubMed ID: 5094674
    [No Abstract]   [Full Text] [Related]  

  • 14. On the specificity of the inhibition of adenine nucleotide translocase by long chain acyl-coenzyme A esters.
    Ho CH; Pande SV
    Biochim Biophys Acta; 1974 Oct; 369(1):86-94. PubMed ID: 4278702
    [No Abstract]   [Full Text] [Related]  

  • 15. Effects of chronic ethanol ingestion upon acyl-CoA: carnitine acyltransferase in liver and heart.
    Parker SL; Thompson JA; Reitz RC
    Lipids; 1974 Aug; 9(8):520-5. PubMed ID: 4418667
    [No Abstract]   [Full Text] [Related]  

  • 16. Different chain length specificities of peroxisomal and mitochondrial enoyl-CoA hydratases.
    Lazarow PB
    Arch Biochem Biophys; 1981 Feb; 206(2):342-5. PubMed ID: 7224642
    [No Abstract]   [Full Text] [Related]  

  • 17. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1973 Sep; 136(1):173-84. PubMed ID: 4797895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 3-hydroxyacyl-CoA epimerase activity of rat liver peroxisomes is due to the combined actions of two enoyl-CoA hydratases: a revision of the epimerase-dependent pathway of unsaturated fatty acid oxidation.
    Smeland TE; Li JX; Chu CH; Cuebas D; Schulz H
    Biochem Biophys Res Commun; 1989 May; 160(3):988-92. PubMed ID: 2730650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of ordinary and -hydroxy fatty acids by heart mitochondria.
    Hull FE; Waugh RA; Malone M
    Arch Biochem Biophys; 1972 Mar; 149(1):69-90. PubMed ID: 5017260
    [No Abstract]   [Full Text] [Related]  

  • 20. Inhibition of mitochondrial metabolism by the diabetogenic thiadiazine diazoxide. I. Action on succinate dehydrogenase and TCA-cycle oxidations.
    Schäfer G; Portenhauser R; Trolp R
    Biochem Pharmacol; 1971 Jun; 20(6):1271-80. PubMed ID: 5118123
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.