These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 5057772)

  • 61. Purification and properties of malate dehydrogenase from the extreme thermophile Bacillus caldolyticus.
    Kristjansson H; Ponnamperuma C
    Orig Life; 1980 Jun; 10(2):185-92. PubMed ID: 7393565
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fame-based Bacillus species identification using artificial neural networks.
    Slabbinck B; Dawyndt P; De Baets B; De Vos P
    Commun Agric Appl Biol Sci; 2006; 71(1):259-62. PubMed ID: 17191518
    [No Abstract]   [Full Text] [Related]  

  • 63. Fatty acid fingerprints of Streptococcus mutans NCTC 10832 grown at various temperatures.
    Drucker DB; Veazey FJ
    Appl Environ Microbiol; 1977 Feb; 33(2):221-6. PubMed ID: 848945
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Variation of branched-chain fatty acids marks the normal physiological range for growth in Listeria monocytogenes.
    Nichols DS; Presser KA; Olley J; Ross T; McMeekin TA
    Appl Environ Microbiol; 2002 Jun; 68(6):2809-13. PubMed ID: 12039736
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluating the use of fatty acid profiles to differentiate human pathogenic and nonpathogenic Listeria species.
    Whittaker P
    J AOAC Int; 2012; 95(5):1457-9. PubMed ID: 23175980
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Major occurrence of cis-delta 5 fatty acids in three psychrophilic species of Bacillus.
    Kaneda T
    Biochem Biophys Res Commun; 1971 Apr; 43(2):298-302. PubMed ID: 5577444
    [No Abstract]   [Full Text] [Related]  

  • 68. Idiomarina baltica sp. nov., a marine bacterium with a high optimum growth temperature isolated from surface water of the central Baltic Sea.
    Brettar I; Christen R; Höfle MG
    Int J Syst Evol Microbiol; 2003 Mar; 53(Pt 2):407-413. PubMed ID: 12710605
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structure and function of L-lactate dehydrogenases from thermophilic and mesophilic bacteria, VI. Nucleotide sequences of lactate dehydrogenase genes from the thermophilic bacteria Bacillus stearothermophilus, B. caldolyticus and B. caldotenax.
    Zülli F; Weber H; Zuber H
    Biol Chem Hoppe Seyler; 1987 Sep; 368(9):1167-77. PubMed ID: 3675869
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Omega-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes.
    Oshima M; Ariga T
    J Biol Chem; 1975 Sep; 250(17):6963-8. PubMed ID: 1158890
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biosynthesis of branched long-chain fatty acids from the related short-chain -keto acid substrates by a cell-free system of Bacillus subtilis.
    Kaneda T
    Can J Microbiol; 1973 Jan; 19(1):87-96. PubMed ID: 4405510
    [No Abstract]   [Full Text] [Related]  

  • 72. Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branded beta-hydroxy acids in Desulfovibrio desulfuricans.
    Boon JJ; de Leeuw JW; Hoek GJ; Vosjan JH
    J Bacteriol; 1977 Mar; 129(3):1183-91. PubMed ID: 845113
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fatty acid composition of Thermus aquaticus at different growth temperatures.
    Heinen W; Klein HP; Volkmann CM
    Arch Mikrobiol; 1970; 72(2):199-202. PubMed ID: 5469574
    [No Abstract]   [Full Text] [Related]  

  • 74. Conversion of fatty acids by Bacillus sphaericus-like organisms.
    Kuo TM; Nakamura LK; Lanser AC
    Curr Microbiol; 2002 Oct; 45(4):265-71. PubMed ID: 12192524
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus).
    Lai Q; Liu Y; Shao Z
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):99-107. PubMed ID: 24158533
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bacillus lindianensis sp. nov., a novel alkaliphilic and moderately halotolerant bacterium isolated from saline and alkaline soils.
    Dou G; Liu H; He W; Ma Y
    Antonie Van Leeuwenhoek; 2016 Jan; 109(1):149-58. PubMed ID: 26604103
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Lipids and fatty acids of a moderately halophilic bacterium, No. 101.
    Ohno Y; Yano I; Hiramatsu T; Masui M
    Biochim Biophys Acta; 1976 Mar; 424(3):337-50. PubMed ID: 1259964
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bacillus acidiproducens sp. nov., vineyard soil isolates that produce lactic acid.
    Jung MY; Kim JS; Chang YH
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2226-31. PubMed ID: 19605722
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sporulation in Bacillus subtilis is independent of membrane fatty acid composition.
    Boudreaux DP; Freese E
    J Bacteriol; 1981 Nov; 148(2):480-6. PubMed ID: 6795180
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of growth temperature and media composition on the fatty acid composition of Bacillus stearothermophilus AN 002.
    Bezbaruah RL; Pillai KR; Gogoi BK; Baruah JN
    Antonie Van Leeuwenhoek; 1988; 54(1):37-45. PubMed ID: 2455474
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.