BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 5058447)

  • 1. Total synthesis of acetate from CO 2 . V. Determination by mass analysis of the different types of acetate formed from 13 CO 2 by heterotrophic bacteria.
    Schulman M; Parker D; Ljungdahl LG; Wood HG
    J Bacteriol; 1972 Feb; 109(2):633-44. PubMed ID: 5058447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum.
    O'Brien WE; Ljungdahl LG
    J Bacteriol; 1972 Feb; 109(2):626-32. PubMed ID: 5058446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 .
    Andreesen JR; Schaupp A; Neurauter C; Brown A; Ljungdahl LG
    J Bacteriol; 1973 May; 114(2):743-51. PubMed ID: 4706193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum.
    Andreesen JR; Gottschalk G; Schlegel HG
    Arch Mikrobiol; 1970; 72(2):154-74. PubMed ID: 4918913
    [No Abstract]   [Full Text] [Related]  

  • 5. Mechanism of acetate synthesis from CO2 by Clostridium acidiurici.
    Waber LJ; Wood HG
    J Bacteriol; 1979 Nov; 140(2):468-78. PubMed ID: 500560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Total synthesis of acetate from CO2 by heterotrophic bacteria.
    Ljungdahl LG
    Annu Rev Microbiol; 1969; 23():515-38. PubMed ID: 4899080
    [No Abstract]   [Full Text] [Related]  

  • 7. Alteration of fermentation products from butyrate to acetate by nitrate reduction in Clostridium perfringens.
    Ishimoto M; Umeyama M; Chiba S
    Z Allg Mikrobiol; 1974; 14(2):115-21. PubMed ID: 4365497
    [No Abstract]   [Full Text] [Related]  

  • 8. Two pathways of glutamate fermentation by anaerobic bacteria.
    Buckel W; Barker HA
    J Bacteriol; 1974 Mar; 117(3):1248-60. PubMed ID: 4813895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum.
    Kerby R; Zeikus JG
    J Bacteriol; 1987 May; 169(5):2063-8. PubMed ID: 3106329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation.
    Andreesen JR; El Ghazzawi E; Gottschalk G
    Arch Mikrobiol; 1974 Mar; 96(2):103-18. PubMed ID: 4836256
    [No Abstract]   [Full Text] [Related]  

  • 11. A comparison of strains of Eubacterium cellulosolvens from the rumen.
    Prins RA; Van Vugt F; Hungate RE; Van Vorstenbosch CJ
    Antonie Van Leeuwenhoek; 1972; 38(2):153-61. PubMed ID: 4537442
    [No Abstract]   [Full Text] [Related]  

  • 12. INCORPORATION OF C14 FROM CARBON DIOXIDE INTO SUGAR PHOSPHATES, CARBOXYLIC ACIDS, AND AMINO ACIDS BY CLOSTRIDIUM THERMOACETICUM.
    LJUNGDAHL L; WOOD HG
    J Bacteriol; 1965 Apr; 89(4):1055-64. PubMed ID: 14276095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and CO-(methyl)-5-methoxybenzimidazolylcobamide as intermediates with Clostridium thermoaceticum.
    Ljungdahl L; Irion E; Wood HG
    Biochemistry; 1965 Dec; 4(12):2771-80. PubMed ID: 5880685
    [No Abstract]   [Full Text] [Related]  

  • 14. Total synthesis of acetate from CO 2 : methyltetrahydrofolate, an intermediate, and a procedure for separation of the folates.
    Parker DJ; Wu TF; Wood HG
    J Bacteriol; 1971 Nov; 108(2):770-6. PubMed ID: 5001869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The autotrophic pathway of acetate synthesis in acetogenic bacteria.
    Ljungdahl LG
    Annu Rev Microbiol; 1986; 40():415-50. PubMed ID: 3096193
    [No Abstract]   [Full Text] [Related]  

  • 16. [New isolation of Clostridium aceticum Wieringa and studies on the metabolic physiology].
    El Ghazzawi E
    Arch Mikrobiol; 1967 May; 57(1):1-19. PubMed ID: 4876161
    [No Abstract]   [Full Text] [Related]  

  • 17. Single-carbon catabolism in acetogens: analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophicum by fermentation and 13C nuclear magnetic resonance measurement.
    Kerby R; Niemczura W; Zeikus JG
    J Bacteriol; 1983 Sep; 155(3):1208-18. PubMed ID: 6411684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative metabolism of vegetative and sporulating cultures of Clostridium thermosaccharolyticum.
    Hsu EJ; Ordal ZJ
    J Bacteriol; 1970 May; 102(2):369-76. PubMed ID: 4315892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentation of purines and their effect on the adenylate energy charge and viability of starved Peptococcus prévotii.
    Reece P; Toth D; Dawes EA
    J Gen Microbiol; 1976 Nov; 97(1):63-71. PubMed ID: 993787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total synthesis of acetate from CO2. 3. Inhibition by alkylhalides of the synthesis from CO2, methyltetrahydrofolate, and methyl-B12 by Clostridium thermoaceticum.
    Ghambeer RK; Wood HG; Schulman M; Ljungdahl L
    Arch Biochem Biophys; 1971 Apr; 143(2):471-84. PubMed ID: 5145645
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.