These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 5058456)

  • 21. Further electron microscope characterization of spore appendages of Clostridium bifermentans.
    Yolton DP; Pope L; Williams MG; Rode LJ
    J Bacteriol; 1968 Jan; 95(1):231-8. PubMed ID: 5636820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Appendages of Clostridium bifermentans spores.
    Pope L; Yolton DP; Rode LJ
    J Bacteriol; 1967 Oct; 94(4):1206-15. PubMed ID: 6051348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and characterization of pure Clostridium spore suspensions.
    Yang WW; Crow-Willard EN; Ponce A
    J Appl Microbiol; 2009 Jan; 106(1):27-33. PubMed ID: 19120612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural changes associated with extraction of group E spore antigen of Clostridium botulinum.
    Hawirko RZ; Chung KL; Magnusson AJ; Emeruwa AC
    J Bacteriol; 1972 Dec; 112(3):1416-9. PubMed ID: 4565544
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biochemical properties of Clostridium bifermentans spores.
    Hausenbauer JM; Waites WM; Setlow P
    J Bacteriol; 1977 Feb; 129(2):1148-50. PubMed ID: 402349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Properties and origin of filamentous appendages on spores of Bacillus cereus.
    Kozuka S; Tochikubo K
    Microbiol Immunol; 1985; 29(1):21-37. PubMed ID: 3921809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of Clostridium difficile Spores Lacking Either SpoVAC or Dipicolinic Acid Synthetase.
    Donnelly ML; Fimlaid KA; Shen A
    J Bacteriol; 2016 Jun; 198(11):1694-1707. PubMed ID: 27044622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muramic and dipicolinic acids in atmospheric particulate matter as biomarkers of bacteria and bacterial spores.
    Di Filippo P; Pomata D; Riccardi C; Buiarelli F; Uccelletti D; Zanni E
    Anal Bioanal Chem; 2017 Feb; 409(6):1657-1666. PubMed ID: 27928607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urea-mercaptoethanol-soluble protein from spores of Bacillus thuringiensis and other species.
    Somerville HJ; Delafield FP; Rittenberg SC
    J Bacteriol; 1970 Feb; 101(2):551-60. PubMed ID: 4984077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of several unique, low-molecular-weight basic proteins in dormant spores of clastridium bifermentans and their degradation during spore germination.
    Setlow P; Waites WM
    J Bacteriol; 1976 Aug; 127(2):1015-7. PubMed ID: 956113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical, chemical and morphological studies of spore coat of Bacillus subtilis.
    Hiragi Y
    J Gen Microbiol; 1972 Aug; 72(1):87-99. PubMed ID: 4627210
    [No Abstract]   [Full Text] [Related]  

  • 32. [Study of the fine structure of spore formation in Clostridium septicum].
    Vaĭsman ISh
    Dokl Akad Nauk SSSR; 1971; 201(4):968-71. PubMed ID: 5131475
    [No Abstract]   [Full Text] [Related]  

  • 33. Chemical composition of the cell walls of Clostridium botulinum type A.
    Takumi K; Kawata T
    Jpn J Microbiol; 1970 Jan; 14(1):57-63. PubMed ID: 4906555
    [No Abstract]   [Full Text] [Related]  

  • 34. Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component.
    Goldman RC; Tipper DJ
    J Bacteriol; 1978 Sep; 135(3):1091-106. PubMed ID: 99427
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cell wall of Rickettsia mooseri. I. Morphology and chemical composition.
    Wood WH; Wisseman CL
    J Bacteriol; 1967 Mar; 93(3):1113-8. PubMed ID: 6025416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions of some spore constituents: an NMR study.
    Divakar S
    Indian J Biochem Biophys; 1984 Jun; 21(3):166-73. PubMed ID: 6519672
    [No Abstract]   [Full Text] [Related]  

  • 37. The protease CspB is essential for initiation of cortex hydrolysis and dipicolinic acid (DPA) release during germination of spores of Clostridium perfringens type A food poisoning isolates.
    Paredes-Sabja D; Setlow P; Sarker MR
    Microbiology (Reading); 2009 Oct; 155(Pt 10):3464-3472. PubMed ID: 19628563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of protoplasts from resting spores.
    Fitz-James PC
    J Bacteriol; 1971 Mar; 105(3):1119-36. PubMed ID: 4995380
    [TBL] [Abstract][Full Text] [Related]  

  • 39. KINETICS OF DRY RUPTURE OF BACTERIAL SPORES IN THE PRESENCE OF SALT.
    SACKS LE; PERCELL PB; THOMAS RS; BAILEY GF
    J Bacteriol; 1964 Apr; 87(4):952-60. PubMed ID: 14137636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. STUDIES OF THE SPORE COATS OF FUNGI. I. ISOLATION AND COMPOSITION OF THE SPORE COATS OF ASPERGILLUS ORYZAE.
    HORIKOSHI K; IIDA S
    Biochim Biophys Acta; 1964 Jul; 83():197-203. PubMed ID: 14200685
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.