BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 5058549)

  • 1. Thin lipid membranes. A model for cell membranes.
    Finkelstein A
    Arch Intern Med; 1972 Feb; 129(2):229-40. PubMed ID: 5058549
    [No Abstract]   [Full Text] [Related]  

  • 2. [Use of pulse technics in the study of artificial lipid membranes].
    Krysiński P
    Postepy Biochem; 1982; 28(3):227-49. PubMed ID: 6764661
    [No Abstract]   [Full Text] [Related]  

  • 3. Water transport in biological and artificial membranes.
    Schafer JA; Andreoli TE
    Arch Intern Med; 1972 Feb; 129(2):279-92. PubMed ID: 5058551
    [No Abstract]   [Full Text] [Related]  

  • 4. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes.
    Tosteson DC; Andreoli TE; Tieffenberg M; Cook P
    J Gen Physiol; 1968 May; 51(5):Suppl:373S+. PubMed ID: 5659043
    [No Abstract]   [Full Text] [Related]  

  • 5. [Effect of hydrocortisone on the ionic permeability of biomolecular lipid membranes].
    Rossel's AN; Antonov VF; Seĭfulla RD
    Farmakol Toksikol; 1971; 34(3):311-3. PubMed ID: 5568690
    [No Abstract]   [Full Text] [Related]  

  • 6. [Functional properties of surface membranes of excitable cells and metabolism].
    Kostiuk PG
    Fiziol Zh; 1970; 16(2):155-60. PubMed ID: 5486586
    [No Abstract]   [Full Text] [Related]  

  • 7. [Action of antimicrobial agents at the level of bacterial membranes].
    Rudzit EA
    Antibiotiki; 1975 Nov; 20(11):1042-50. PubMed ID: 773280
    [No Abstract]   [Full Text] [Related]  

  • 8. Calcium-adenosine triphosphate-lipid interactions and their significance in the excitatory membrane.
    Abood LG
    Neurosci Res (N Y); 1969; 2(0):41-70. PubMed ID: 4276765
    [No Abstract]   [Full Text] [Related]  

  • 9. Lipid-phase transitions: the macromolecular basis for nerve excitation and other membrane phenomena.
    Torch WC
    Neurology; 1970 Apr; 20(4):415-6. PubMed ID: 5535076
    [No Abstract]   [Full Text] [Related]  

  • 10. Aqueous pores created in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B.
    Finkelstein A; Holz R
    Membranes; 1973; 2():377-408. PubMed ID: 4585230
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrical impedance of excitable membranes.
    Taylor RE
    Ann N Y Acad Sci; 1977 Dec; 303():298-305. PubMed ID: 290298
    [No Abstract]   [Full Text] [Related]  

  • 12. [Molecular model of surface-active substances-biomembrane interactions. Effects on drug transport].
    Alhaique F; Marchetti M; Riccieri FM; Santucci E
    Boll Chim Farm; 1973 Mar; 112(3):170-6. PubMed ID: 4721641
    [No Abstract]   [Full Text] [Related]  

  • 13. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli.
    Wu M; Maier E; Benz R; Hancock RE
    Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolayer and interfacial permeation.
    Blank M
    J Gen Physiol; 1968 Jul; 52(1):191Suppl-208s. PubMed ID: 5742831
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes.
    Tosteson DC
    Fed Proc; 1968; 27(6):1269-77. PubMed ID: 5725217
    [No Abstract]   [Full Text] [Related]  

  • 16. [Membranes (ionic permeability, excitation, control)].
    Liberman EA
    Biofizika; 1970; 15(2):278-97. PubMed ID: 4319328
    [No Abstract]   [Full Text] [Related]  

  • 17. Numerical simulation of electroporation in spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Artif Organs; 2004 Apr; 28(4):357-61. PubMed ID: 15084196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroporation theory. Concepts and mechanisms.
    Weaver JC
    Methods Mol Biol; 1995; 48():3-28. PubMed ID: 8528402
    [No Abstract]   [Full Text] [Related]  

  • 19. [Dependence of the intensity of growth processes on the potential difference at the cytoplasmic membrane].
    Kruglov VP
    Ontogenez; 1985; 16(4):424-31. PubMed ID: 4047588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin.
    Weidema AF; Kropacheva TN; Raap J; Ypey DL
    Chem Biodivers; 2007 Jun; 4(6):1347-59. PubMed ID: 17589868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.