BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 5058678)

  • 1. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XIV. Preparation of ribosomes from human placenta: characteristics and requirements of aminoacyl-tRNA binding.
    Chen BP; Pestka S
    Arch Biochem Biophys; 1972 Jan; 148(1):161-8. PubMed ID: 5058678
    [No Abstract]   [Full Text] [Related]  

  • 2. Solvent and specificity. Binding and isoleucylation of phenylalanine transfer ribonucleic acid (Escherichia coli) by isoleucyl transfer ribonucleic acid synthetase from Escherichia coli.
    Yarus M
    Biochemistry; 1972 Jun; 11(12):2352-61. PubMed ID: 4337616
    [No Abstract]   [Full Text] [Related]  

  • 3. Polynucleotide analogue inhibition of messenger-stimulated transfer RNA binding to ribosomes.
    Cowling GJ; Jones AS; Walker RT
    Biochim Biophys Acta; 1971 Dec; 254(3):452-6. PubMed ID: 4944813
    [No Abstract]   [Full Text] [Related]  

  • 4. Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors.
    Pestka S
    J Biol Chem; 1969 Mar; 244(6):1533-9. PubMed ID: 4886309
    [No Abstract]   [Full Text] [Related]  

  • 5. The effect of calcium on in vitro polyphenylalanine synthesis by rice ribosomes.
    McCarthy WJ; App AA; Crotty WJ
    Biochim Biophys Acta; 1971 Aug; 246(1):132-40. PubMed ID: 5123564
    [No Abstract]   [Full Text] [Related]  

  • 6. The requirement for tRNA for the shift in the optimum Mg++ concentration during the synthesis of polyphenylalanine.
    Mosteller RD; Culp WJ; Hardesty B
    Biochem Biophys Res Commun; 1968 Mar; 30(6):631-6. PubMed ID: 5642381
    [No Abstract]   [Full Text] [Related]  

  • 7. Polyphenylalanine synthesis and binding of phenylalanyl transfer ribonucleic acid by ribosomes from muscle of normal and diabetic rats.
    Castles JJ; Rolleston FS; Wool IG
    J Biol Chem; 1971 Mar; 246(6):1799-805. PubMed ID: 5547705
    [No Abstract]   [Full Text] [Related]  

  • 8. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action.
    Pestka S
    Biochem Biophys Res Commun; 1969 Aug; 36(4):589-95. PubMed ID: 4897408
    [No Abstract]   [Full Text] [Related]  

  • 9. [Accumulation of aminoacyl-tRNA in rat liver ribosomes].
    Kramer G; Klink F
    Z Naturforsch B; 1967 Dec; 22(12):1312-8. PubMed ID: 4384726
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition by pactamycin of the initiation of protein synthesis. Binding of N-acetylphenylalanyl transfer ribonucleic acid and polyuridylic acid to ribosomes.
    Cohen LB; Herner AE; Goldberg IH
    Biochemistry; 1969 Apr; 8(4):1312-26. PubMed ID: 4896457
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on the formation of transfer ribonucleic acid-ribosome complexes. II. A possible site on the 50 S subunit protecting aminoacyl transfer ribonucleic acid from deacylation.
    Pestka S
    J Biol Chem; 1967 Nov; 242(21):4939-47. PubMed ID: 4862426
    [No Abstract]   [Full Text] [Related]  

  • 12. The effect of guanylyl-5'-methylene diphosphonate on binding of aminoacyl-transfer ribonucleic acid to ribosomes.
    Shorey RL; Ravel JM; Shive W
    Arch Biochem Biophys; 1971 Sep; 146(1):110-7. PubMed ID: 4947260
    [No Abstract]   [Full Text] [Related]  

  • 13. On the mechanism of coded binding of aminoacyl-tRNA to ribosomes: number and properties of sites.
    Swan D; Sander G; Bermek E; Krämer W; Kreuzer T; Arglebe C; Zöllner R; Eckert K; Mathaei H
    Cold Spring Harb Symp Quant Biol; 1969; 34():179-96. PubMed ID: 4909496
    [No Abstract]   [Full Text] [Related]  

  • 14. Protein synthesis in rabbit reticulocytes. Factors controlling internal and terminal methionine codon recognition by the methionyl transfer ribonucleic acid species.
    Gupta N; Chatterjee NK; Woodley CL; Bose KK
    J Biol Chem; 1971 Dec; 246(24):7460-9. PubMed ID: 4944310
    [No Abstract]   [Full Text] [Related]  

  • 15. Partial in vitro reconstitution of active 40S ribosomal subunits from rat liver.
    Reboud AM; Buisson M; Amoros MJ; Reboud JP
    Biochem Biophys Res Commun; 1972 Mar; 46(6):2012-8. PubMed ID: 5018665
    [No Abstract]   [Full Text] [Related]  

  • 16. Binding of transfer ribonucleic acid to ribosomes. Comparison of the nonenzymatic binding of aminoacylated and deacylated transfer ribonucleic acid.
    Philipps GR
    J Biol Chem; 1970 Feb; 245(4):859-68. PubMed ID: 4906638
    [No Abstract]   [Full Text] [Related]  

  • 17. Inactivation of protein-synthesizing T-factor by N-tosyl-L-phenylalanyl chloromethane.
    Sedlácek J; Jonák J; Rychlík I
    Biochim Biophys Acta; 1971 Dec; 254(3):478-80. PubMed ID: 4944814
    [No Abstract]   [Full Text] [Related]  

  • 18. The interaction of aminoacyl-tRNA and N-acylaminoacyl-tRNA with ribosomes and ribosomal subunits.
    Gasior E; Rao P; Moldave K
    Biochim Biophys Acta; 1971 Dec; 254(2):331-40. PubMed ID: 5136452
    [No Abstract]   [Full Text] [Related]  

  • 19. Protein synthesis during fungal spore germination. I. Characteristics of an in vitro phenylalanine incorporating system prepared from germinated spores of Botryodiplodia theobromae.
    Van Etten JL
    Arch Biochem Biophys; 1968 Apr; 125(1):13-21. PubMed ID: 5649510
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of high salt concentration on fidelity of translation by Escherichia coli ribosomes.
    Chomczyński P; Szafrański P
    Acta Biochim Pol; 1971; 18(2):163-70. PubMed ID: 4939214
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.