BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 5059116)

  • 1. Formyltetrahydrofolate synthetase. Substrate binding to monomeric subunits.
    Curthoys NP; D'Ari Straus L; Rabinowitz JC
    Biochemistry; 1972 Feb; 11(3):345-9. PubMed ID: 5059116
    [No Abstract]   [Full Text] [Related]  

  • 2. Formyltetrahydrofolate synthetase. Binding of adenosine triphosphate and related ligands determined by partition equilibrium.
    Curthoys NP; Rabinowitz JC
    J Biol Chem; 1971 Nov; 246(22):6942-52. PubMed ID: 5126227
    [No Abstract]   [Full Text] [Related]  

  • 3. Formyltetrahydrofolate synthetase. Binding of folate substrates and kinetics of the reverse reaction.
    Curthoys NP; Rabinowitz JC
    J Biol Chem; 1972 Apr; 247(7):1965-71. PubMed ID: 5016638
    [No Abstract]   [Full Text] [Related]  

  • 4. The subunit structure of formyltetrahydrofolate synthetase.
    Welch WH; Buttlaire DH; Hersh RT; Himes RH
    Biochim Biophys Acta; 1971 Jun; 236(3):599-611. PubMed ID: 5559964
    [No Abstract]   [Full Text] [Related]  

  • 5. Cation- and anion-dependent reassociation of formyltetrahydrofolate synthetase subunits.
    Harmony JA; Shaffer PJ; Himes RH
    J Biol Chem; 1974 Jan; 249(2):394-401. PubMed ID: 4809524
    [No Abstract]   [Full Text] [Related]  

  • 6. Cation-dependent reassociation of subunits of N10-formyltetrahydrofolate synthetase from Clostridium acidi-urici and Clostridium cylindrosporum.
    MacKenzie RE; Rabinowitz JC
    J Biol Chem; 1971 Jun; 246(11):3731-6. PubMed ID: 5578916
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of an allosteric effector. Guanosine triphosphate activation in cytosine triphosphate synthetase.
    Levitzki A; Koshland DE
    Biochemistry; 1972 Jan; 11(2):241-6. PubMed ID: 4550559
    [No Abstract]   [Full Text] [Related]  

  • 8. Succinyl coenzyme A synthetase of Escherichia coli. Effects of phosphoenzyme formation and of substrate binding on the reactivity and stability of the enzyme.
    Moffet FJ; Wang T; Bridger WA
    J Biol Chem; 1972 Dec; 247(24):8139-44. PubMed ID: 4565676
    [No Abstract]   [Full Text] [Related]  

  • 9. FORMYLTETRAHYDROFOLATE SYNTHETASE: ADDITIONAL OBSERVATIONS CONCERNING THE MECHANISM OF THE REACTION.
    UYEDA K; RABINOWITZ JC
    Arch Biochem Biophys; 1964 Sep; 107():419-26. PubMed ID: 14234491
    [No Abstract]   [Full Text] [Related]  

  • 10. Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum.
    Sun AY; Ljungdahl L; Wood HG
    J Bacteriol; 1969 May; 98(2):842-4. PubMed ID: 5784233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formyltetrahydrofolate synthetase. A study of equilibrium reaction rates.
    Joyce BK; Himes RH
    J Biol Chem; 1966 Dec; 241(23):5716-24. PubMed ID: 5928207
    [No Abstract]   [Full Text] [Related]  

  • 12. Formyltetrahydrofolate synthetase. Initial velocity and product inhibition studies.
    Joyce BK; Himes RH
    J Biol Chem; 1966 Dec; 241(23):5725-31. PubMed ID: 5928208
    [No Abstract]   [Full Text] [Related]  

  • 13. Formyltetrahydrofolate synthetase. Effect of pH and temperature on the reaction.
    Himes RH; Wilder T
    Arch Biochem Biophys; 1968 Mar; 124(1):230-7. PubMed ID: 5661603
    [No Abstract]   [Full Text] [Related]  

  • 14. The binding of ATP and ADP by nitrogenase components from Clostridium pasteurianum.
    Tso MY; Burris RH
    Biochim Biophys Acta; 1973 Jun; 309(2):263-70. PubMed ID: 4731961
    [No Abstract]   [Full Text] [Related]  

  • 15. Photooxidation of formyltetrahydrofolate synthetase in the presence of methylene blue.
    Mackenzie RE; Straus LD; Rabinowitz JC
    Arch Biochem Biophys; 1972 Jun; 150(2):421-7. PubMed ID: 5044034
    [No Abstract]   [Full Text] [Related]  

  • 16. Studies of manganous nucleotide complexes with uridine diphosphate-glucose pyrophosphorylase, formyltetrahydrofolate synthetase, and creatine kinase. Mechanism of water proton magnetic relaxation from frequency dependent measurements.
    Reed GH; Diefenbach H; Cohn M
    J Biol Chem; 1972 May; 247(10):3066-72. PubMed ID: 5027742
    [No Abstract]   [Full Text] [Related]  

  • 17. Renaturation of formyltetrahydrofolate synthetase from urea and guanidinium chloride solutions.
    Garrison CK; Harmony JA; Himes RH
    Biochim Biophys Acta; 1976 Sep; 446(1):301-9. PubMed ID: 974116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum.
    Brewer JM; Ljungdahl L; Spencer TE; Neece SH
    J Biol Chem; 1970 Sep; 245(18):4798-803. PubMed ID: 5456152
    [No Abstract]   [Full Text] [Related]  

  • 19. Formyltetrahydrofolate synthetase-catalyzed formation of ATP from carbamyl phosphate and ADP. Evidence for a formyl phosphate intermediate in the enzyme's catalytic mechanism.
    Buttlaire DH; Himes RH; Reed GH
    J Biol Chem; 1976 Jul; 251(13):4159-61. PubMed ID: 932026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Equilibrium and water proton relaxation rate enhancement properties of formyltetrahydrofolate synthetase-manganous ion-substrate complexes.
    Buttlaire DH; Reed GH; Himes RH
    J Biol Chem; 1975 Jan; 250(1):254-60. PubMed ID: 166988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.