These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 5060756)

  • 1. Energy parameters in polypeptides. V. An empirical hydrogen bond potential function based on molecular orbital calculations.
    McGuire RF; Momany FA; Scheraga HA
    J Phys Chem; 1972 Feb; 76(3):375-93. PubMed ID: 5060756
    [No Abstract]   [Full Text] [Related]  

  • 2. Non-empirical valence bond calculation of hydrogen bond energy in polypeptides.
    Takashima S
    Biopolymers; 1972; 11(9):1903-11. PubMed ID: 5072736
    [No Abstract]   [Full Text] [Related]  

  • 3. Energy parameters in polypeptides. 3. Semiempirical molecular orbital calculations for hydrogen-bonded model peptides.
    Momany FA; McGuire RF; Yan JF; Scheraga HA
    J Phys Chem; 1970 Jun; 74(12):2424-38. PubMed ID: 5448603
    [No Abstract]   [Full Text] [Related]  

  • 4. Energy functions for peptides and proteins. II. The amide hydrogen bond and calculation of amide crystal properties.
    Hagler AT; Lifson S
    J Am Chem Soc; 1974 Aug; 96(17):5327-35. PubMed ID: 4851861
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals.
    Hagler AT; Huler E; Lifson S
    J Am Chem Soc; 1974 Aug; 96(17):5319-27. PubMed ID: 4851860
    [No Abstract]   [Full Text] [Related]  

  • 6. Energy transfer in poly-L-tyrosine as a function of the degree of ionization of the phenolic hydroxyls. IV. Calculations of theoretical transfer rates.
    ten Bosch JJ; Knopp JA
    Biochim Biophys Acta; 1969; 188(2):173-84. PubMed ID: 5823021
    [No Abstract]   [Full Text] [Related]  

  • 7. Molecular orbital calculations on the conformation of polypeptides and proteins. V. Conformational energy maps and stereochemical rotational states of aliphatic residues.
    Maigret B; Perahia D; Pullman B
    Biopolymers; 1971; 10(3):491-511. PubMed ID: 5552657
    [No Abstract]   [Full Text] [Related]  

  • 8. [Calculation of parameters of the phenomenological theory of helix-coil transition in polypeptides based on a microscopic model].
    Aĭrian ShA; Ananikian NS; Morozov VF
    Biofizika; 1987; 32(3):394-7. PubMed ID: 3620519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on hydrogen bonds. Part V--Hydrogen bonding in energy minimization studies of peptides.
    Paul PK; Ramakrishnan C
    J Biomol Struct Dyn; 1985 Feb; 2(5):879-98. PubMed ID: 3916936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer in poly-L-tyrosine. V. Fluorescence polarization studies.
    Knopp JA; ten Bosch JJ; Longworth JW
    Biochim Biophys Acta; 1969; 188(2):185-95. PubMed ID: 5823022
    [No Abstract]   [Full Text] [Related]  

  • 11. Estimating the energy of intramolecular hydrogen bonds from
    Afonin AV; Vashchenko AV; Sigalov MV
    Org Biomol Chem; 2016 Nov; 14(47):11199-11211. PubMed ID: 27841888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-trapping of the N-H vibrational mode in alpha-helical polypeptides.
    Tsivlin DV; May V
    J Chem Phys; 2006 Dec; 125(22):224902. PubMed ID: 17176162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of histidine model peptides. I. Conformational energy calculations for L-alanyl-L-histidine diketopiperazine.
    Grebow PE; Hooker TM
    Biopolymers; 1974 Nov; 13(11):2349-66. PubMed ID: 4429787
    [No Abstract]   [Full Text] [Related]  

  • 14. An analytic potential energy function for the amide-amide and amide-water intermolecular hydrogen bonds in peptides.
    Sun CL; Jiang XN; Wang CS
    J Comput Chem; 2009 Nov; 30(15):2567-75. PubMed ID: 19373825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial electron distribution and population analysis of amides, carboxylic acid, and peptides, and their relation to empirical potential functions.
    Hagler AT; Lapiccirella A
    Biopolymers; 1976 Jun; 15(6):1167-1200. PubMed ID: 1268320
    [No Abstract]   [Full Text] [Related]  

  • 16. Geometry of the -helical structure of polypeptides in solution.
    Skvortsov AM; Birshtein TM; Zalenskii AO
    Mol Biol; 1971; 5(1):55-61. PubMed ID: 5154803
    [No Abstract]   [Full Text] [Related]  

  • 17. Potential functions for hydrogen bond interactions. II. Formulation of an empirical potential function.
    Balasubramanian R; Chidambaram R; Ramachandran GN
    Biochim Biophys Acta; 1970 Nov; 221(2):196-206. PubMed ID: 5490228
    [No Abstract]   [Full Text] [Related]  

  • 18. Estimating the hydrogen bond energy.
    Wendler K; Thar J; Zahn S; Kirchner B
    J Phys Chem A; 2010 Sep; 114(35):9529-36. PubMed ID: 20707378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protonation of peptides: A non-empirical theoretical study.
    Moffat JB
    J Theor Biol; 1973 Aug; 40(2):247-58. PubMed ID: 4747240
    [No Abstract]   [Full Text] [Related]  

  • 20. Molecular orbital calculations on the conformation of polypeptides and proteins. 8. The conformational energy maps and stereochemical rotational states of the asparaginyl, glutaminyl aspartyl and glutamyl residues.
    Maigret B; Perahia D; Pullman B
    Biopolymers; 1971; 10(9):1649-60. PubMed ID: 5126131
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.