These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 5061436)
1. A CNDO-2 calculation on the helical conformations of a tetrapeptide of glycine. 3. The phi-psi energy surface. Schor R; Stymne H; Wettermark G; David CW J Phys Chem; 1972 Mar; 76(5):670-2. PubMed ID: 5061436 [No Abstract] [Full Text] [Related]
2. Extended Hückel calculations on polypeptide chains. II. The phi-psi energy surface for a tetrapeptide of glycine. Rossi AR; David CW; Schor R J Phys Chem; 1970 Dec; 74(26):4551-5. PubMed ID: 5494902 [No Abstract] [Full Text] [Related]
3. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study. Law JM; Setiadi DH; Chass GA; Csizmadia IG; Viskolcz B J Phys Chem A; 2005 Jan; 109(3):520-33. PubMed ID: 16833374 [TBL] [Abstract][Full Text] [Related]
4. Contributions of left-handed helical residues to the structure and stability of bacteriophage T4 lysozyme. Nicholson H; Söderlind E; Tronrud DE; Matthews BW J Mol Biol; 1989 Nov; 210(1):181-93. PubMed ID: 2511328 [TBL] [Abstract][Full Text] [Related]
5. Influence of solvent molecules on the stereochemical code of glycyl residues in proteins. Eswar N; Nagarajaram HA; Ramakrishnan C; Srinivasan N Proteins; 2002 Nov; 49(3):326-34. PubMed ID: 12360522 [TBL] [Abstract][Full Text] [Related]
6. Extended Hückel calculations on polypeptide chains. IV. The phy-psi energy surface for a tetrapeptide of poly-L-alanine. Rossi AR; David CW; Schor R J Phys Chem; 1972 Sep; 76(19):2793-5. PubMed ID: 5054871 [No Abstract] [Full Text] [Related]
7. The utility of side-chain cyclization in determining the receptor-bound conformation of peptides: cyclic tripeptides and angiotensin II. Kataoka T; Beusen DD; Clark JD; Yodo M; Marshall GR Biopolymers; 1992 Nov; 32(11):1519-33. PubMed ID: 1333831 [TBL] [Abstract][Full Text] [Related]
8. Design of peptides: synthesis, crystal structure and molecular conformation of N-Boc-L-Val-delta Phe-L-Val-OC H3. Mitra SN; Dey S; Bhatia S; Singh TP Int J Biol Macromol; 1996 Aug; 19(2):103-12. PubMed ID: 8842773 [TBL] [Abstract][Full Text] [Related]
9. Conformation of glycyl residues in globular proteins. Ramakrishnan C; Srinivasan N; Prashanth D Int J Pept Protein Res; 1987 May; 29(5):629-37. PubMed ID: 3610477 [TBL] [Abstract][Full Text] [Related]
10. Empirical evaluation of the influence of side chains on the conformational entropy of the polypeptide backbone. Stites WE; Pranata J Proteins; 1995 Jun; 22(2):132-40. PubMed ID: 7567961 [TBL] [Abstract][Full Text] [Related]
11. Differential deuterium isotope shifts and one-bond 1H-13C scalar couplings in the conformational analysis of protein glycine residues. LeMaster DM; LaIuppa JC; Kushlan DM J Biomol NMR; 1994 Nov; 4(6):863-70. PubMed ID: 7812157 [TBL] [Abstract][Full Text] [Related]
12. Structure and solution conformation of the cytostatic cyclic tetrapeptide WF-3161, cyclo[L-leucyl-L-pipecolyl-L-(2-amino-8-oxo-9, 10-epoxydecanoyl)-D-phenylalanyl]. Kawai M; Pottorf RS; Rich DH J Med Chem; 1986 Nov; 29(11):2409-11. PubMed ID: 3783600 [TBL] [Abstract][Full Text] [Related]
13. Evidence for strained interactions between side-chains and the polypeptide backbone. Stites WE; Meeker AK; Shortle D J Mol Biol; 1994 Jan; 235(1):27-32. PubMed ID: 8289248 [TBL] [Abstract][Full Text] [Related]
14. Computational study of conformational preferences of thioamide-containing azaglycine peptides. Lee HJ; Kim JH; Jung HJ; Kim KY; Kim EJ; Choi YS; Yoon CJ J Comput Chem; 2004 Jan; 25(2):169-78. PubMed ID: 14648616 [TBL] [Abstract][Full Text] [Related]
15. Conformation of di-n-propylglycine residues (Dpg) in peptides: crystal structures of a type I' beta-turn forming tetrapeptide and an alpha-helical tetradecapeptide. Hegde RP; Aravinda S; Rai R; Kaul R; Vijayalakshmi S; Rao RB; Shamala N; Balaram P J Pept Sci; 2008 May; 14(5):648-59. PubMed ID: 18085516 [TBL] [Abstract][Full Text] [Related]
16. [Surface potential energy of peptides and conformation of amino acid residues in proteins. Preliminary results of processing using databank protein structures]. Basharov MA Biofizika; 1995; 40(2):260-73. PubMed ID: 7578333 [TBL] [Abstract][Full Text] [Related]
17. Mapping the backbone dihedral free-energy surfaces in small peptides in solution using adiabatic free-energy dynamics. Rosso L; Abrams JB; Tuckerman ME J Phys Chem B; 2005 Mar; 109(9):4162-7. PubMed ID: 16851477 [TBL] [Abstract][Full Text] [Related]
18. 13C nuclear magnetic resonance relaxation-derived psi, phi bond rotational energy barriers and rotational restrictions for glycine 13C alpha-methylenes in a GXX-repeat hexadecapeptide. Daragan VA; Kloczewiak MA; Mayo KH Biochemistry; 1993 Oct; 32(40):10580-90. PubMed ID: 8399202 [TBL] [Abstract][Full Text] [Related]
19. Charge transfer study through the determination of the ionization energies of tetrapeptides X3-Tyr, X = Gly, Ala, or Leu. Influence of the inclusion of one glycine in alanine and leucine containing peptides. Dehareng D; Dive G J Phys Chem A; 2006 Nov; 110(43):11975-87. PubMed ID: 17064186 [TBL] [Abstract][Full Text] [Related]
20. Solution conformation of a tetradecapeptide stabilized by two di-n-propyl glycine residues. Sarojini V; Balaji Rao R; Ragothama S; Balaram P J Pept Sci; 2010 Aug; 16(8):430-6. PubMed ID: 20623490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]