These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 5063972)

  • 21. Total energy production and phosphocreatine hydrolysis in the isotonic twitch.
    CARLSON FD; HARDY DJ; WILKIE DR
    J Gen Physiol; 1963 May; 46(5):851-82. PubMed ID: 14018693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Appendix. Free energy and enthalpy of atp hydrolysis in the sarcoplasm.
    Kushmerick MJ; Davies RE
    Proc R Soc Lond B Biol Sci; 1969 Dec; 174(1036):315-53. PubMed ID: 4391323
    [No Abstract]   [Full Text] [Related]  

  • 23. The role of shortening and tension in the heatproduction of muscle.
    Lórinczi D
    Acta Biochim Biophys Acad Sci Hung; 1977; 12(3):283-9. PubMed ID: 602677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A macroscopic ansatz to deduce the Hill relation.
    Günther M; Schmitt S
    J Theor Biol; 2010 Apr; 263(4):407-18. PubMed ID: 20045704
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a Hill based muscle model for the energy cost and efficiency of muscular contraction.
    Houdijk H; Bobbert MF; de Haan A
    J Biomech; 2006; 39(3):536-43. PubMed ID: 16389094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Muscle enthalpy production and its relationship to actomyosin ATPase.
    Homsher E
    Annu Rev Physiol; 1987; 49():673-90. PubMed ID: 2952055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of physical and biochemical energy balances: chemical breakdown, heat production, and oxygen consumption in frog sartorius muscle.
    Paul RJ
    Fed Proc; 1982 Feb; 41(2):169-73. PubMed ID: 7060741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Study of force development in resting and activated muscles during velocity dependent stretching.
    Belágyi J; Széchenyi J; Pallai G; Bretz K; Tatai Z
    Acta Biochim Biophys Acad Sci Hung; 1979; 14(1-2):95-101. PubMed ID: 316260
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanics and energetics of contraction in thick and in thin filament regulated muscles.
    Rall JA
    Soc Gen Physiol Ser; 1982; 37():203-12. PubMed ID: 6983139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Modelling of viscosity equivalent factor in the human muscle during muscular shortening].
    Martin A; Martin L; Morlon B
    C R Seances Soc Biol Fil; 1994; 188(4):379-85. PubMed ID: 7736260
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimate of muscle-shortening rate during locomotion.
    Lindstedt SL; Hoppeler H; Bard KM; Thronson HA
    Am J Physiol; 1985 Dec; 249(6 Pt 2):R699-703. PubMed ID: 4073290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of shortening heat on distance shortened in frog skeletal muscle [proceedings].
    Irving M; Woledge RC
    J Physiol; 1979 Jul; 292():76P-77P. PubMed ID: 490412
    [No Abstract]   [Full Text] [Related]  

  • 33. Variable series elasticity accounts for Fenn effects of skeletal and cardiac muscles.
    Suga H
    Am J Physiol; 1990 Feb; 258(2 Pt 2):R457-61. PubMed ID: 2095742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model of optimal voluntary muscular control.
    FitzHugh R
    J Math Biol; 1977 Jul; 4(3):203-36. PubMed ID: 894149
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The chemical energetics of muscle contraction. I. Activation heat, heat of shortening and ATP utilization for activation-relaxation processes.
    Kushmerick MJ; Larson RE; Davies RE
    Proc R Soc Lond B Biol Sci; 1969 Dec; 174(1036):293-313. PubMed ID: 4391322
    [No Abstract]   [Full Text] [Related]  

  • 36. Energetics of the time-varying elastance model, a visco-elastic model, matches Mommaerts' unifying concept of the Fenn effect of muscle.
    Suga H
    Jpn Heart J; 1990 May; 31(3):341-53. PubMed ID: 2214136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The variation of muscle oxygen consumption with velocity of shortening.
    Baskin RJ
    J Gen Physiol; 1965 Sep; 49(1):9-15. PubMed ID: 5862509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autonomic energy conversion. II. An approach to the energetics of muscular contraction.
    Caplan SR
    Biophys J; 1968 Oct; 8(10):1167-93. PubMed ID: 5679394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A reconsideration of the link between the energetics of water and of ATP hydrolysis energy in the power strokes of molecular motors in protein structures.
    Widdas WF
    Int J Mol Sci; 2008 Sep; 9(9):1730-1752. PubMed ID: 19325829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of diffusion delay in a layered medium. Application to heat measurements from muscle.
    Gilbert SH; Mathias RT
    Biophys J; 1988 Oct; 54(4):603-10. PubMed ID: 3224146
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.