These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 5065141)
1. An extremely rapid burst of respiration upon aeration of mitochondria: measurement of oxygen tension with 10-msec time resolution. Penniston JT Arch Biochem Biophys; 1972 Jun; 150(2):556-65. PubMed ID: 5065141 [No Abstract] [Full Text] [Related]
2. Control of the energy coupling modes in mitochondria by mercurials. Southard JH; Green DE Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015 [No Abstract] [Full Text] [Related]
3. Speed of respiration-dependent proton ejection by mitochondria. Application of a pH-measuring system with 10-msec resolution. Penniston JT; Southard JH; Green DE; Luzzana M Arch Biochem Biophys; 1971 Feb; 142(2):638-44. PubMed ID: 5550163 [No Abstract] [Full Text] [Related]
4. Induction of transmembrane proton transfer by mercurials in mitochondria. II. Release of a Na+-K+ ionophore. Southard JH; Blondin GA; Green DE J Biol Chem; 1974 Feb; 249(3):678-81. PubMed ID: 4130102 [No Abstract] [Full Text] [Related]
5. Ion transport by heart mitochondria. The effects of Cu 2+ on membrane permeability. Hwang KM; Scott KM; Brierley GP Arch Biochem Biophys; 1972 Jun; 150(2):746-56. PubMed ID: 4261416 [No Abstract] [Full Text] [Related]
6. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations. Brierley GP; Jurkowitz M; Scott KM; Merola AJ Arch Biochem Biophys; 1971 Dec; 147(2):545-56. PubMed ID: 5136102 [No Abstract] [Full Text] [Related]
7. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion. Scott KM; Knight VA; Settlemire CT; Brierley GP Biochemistry; 1970 Feb; 9(4):714-24. PubMed ID: 5417392 [No Abstract] [Full Text] [Related]
8. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles. Taggart WV; Sanadi DR Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058 [No Abstract] [Full Text] [Related]
9. Properties of three cytochrome b-like species in mitochondria and submitochondrial particles. Wikström MK Biochim Biophys Acta; 1971 Dec; 253(2):332-45. PubMed ID: 5133534 [No Abstract] [Full Text] [Related]
10. Experimental and theoretical studies of the electron transport chain. I. The effect of respiratory chain inhibitors on the carbon monoxide blocked respiratory chain. Wagner M; Erecińska M Arch Biochem Biophys; 1971 Dec; 147(2):666-74. PubMed ID: 5136105 [No Abstract] [Full Text] [Related]
11. Reduction kinetics of cytochromes b. Boveris A; Erecińska M; Wagner M Biochim Biophys Acta; 1972 Feb; 256(2):223-42. PubMed ID: 5016537 [No Abstract] [Full Text] [Related]
12. Energy-dependent release of magnesium from beef heart submitochondrial particles. Schuster SM; Olson MS J Biol Chem; 1973 Dec; 248(24):8370-7. PubMed ID: 4202777 [No Abstract] [Full Text] [Related]
13. Induction of transmembrane proton transfer by mercurials in mitochondria. I. Ion movements accompanying transmembrane proton transfer. Southard JH; Penniston JT; Green DE J Biol Chem; 1973 May; 248(10):3546-50. PubMed ID: 4702876 [No Abstract] [Full Text] [Related]
14. Mitochondrial H2O2 formation at site II. Loschen G; Azzi A; Flohé L Hoppe Seylers Z Physiol Chem; 1973 Jul; 354(7):791-4. PubMed ID: 4372155 [No Abstract] [Full Text] [Related]
15. Evidence for the occurrence in submitochondrial particles of a dual respiratory chain containing different forms of cytochrome b. Norling B; Nelson BD; Nordenbrand K; Ernster L Biochim Biophys Acta; 1972 Jul; 275(1):18-32. PubMed ID: 4340268 [No Abstract] [Full Text] [Related]
16. Isolation of ionophores from mitochondria. Blondin GA Ann N Y Acad Sci; 1974 Feb; 227():392-7. PubMed ID: 4524340 [No Abstract] [Full Text] [Related]
17. NAD + -induced phosphate acceptor specificity in submitochondrial systems. Vallin I; Lundberg P Biochim Biophys Acta; 1972 Feb; 256(2):191-8. PubMed ID: 4335834 [No Abstract] [Full Text] [Related]
18. Comparison of rates of proton ejection and oxygen consumption within 300 msec after oxygenation of beef heart mitochondria. Penniston JT Biochemistry; 1973 Feb; 12(4):650-5. PubMed ID: 4691510 [No Abstract] [Full Text] [Related]
19. Ion transport by heart mitochondria. XV. Morphological changes associated with the penetration of solutes into isolated heart mitochondria. Hunter GR; Kamishima Y; Brierley GP Biochim Biophys Acta; 1969 May; 180(1):81-97. PubMed ID: 5787272 [No Abstract] [Full Text] [Related]
20. Effects of guanidine derivatives on mitochondrial function. 3. The mechanism of phenethylbiguanide accumulation and its relationship to in vitro respiratory inhibition. Davidoff F J Biol Chem; 1971 Jun; 246(12):4017-27. PubMed ID: 5561472 [No Abstract] [Full Text] [Related] [Next] [New Search]