These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 5065877)

  • 1. Potential difference and short-circuit current in isolated human cornea.
    Fischer F; Voigt G; Liegl O; Wiederholt M
    Pflugers Arch; 1972; 332():Suppl 332:R91. PubMed ID: 5065877
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrical potential profile of the isolated frog cornea.
    Candia OA; Zadunaisky JA; Bajandas F
    Invest Ophthalmol; 1968 Aug; 7(4):405-15. PubMed ID: 5663551
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of heptanol on the short circuit currents of cornea and ciliary body demonstrates rate limiting role of heterocellular gap junctions in active ciliary body transport.
    Wolosin JM; Candia OA; Peterson-Yantorno K; Civan MM; Shi XP
    Exp Eye Res; 1997 Jun; 64(6):945-52. PubMed ID: 9301475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of the inhibition of Cl- transport by furosemide: evidence for competitive inhibition of active transport in toad cornea.
    Ludens JH
    J Pharmacol Exp Ther; 1982 Oct; 223(1):25-9. PubMed ID: 6811731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of calcium concentration on the transmural potential difference and the intensity of the short-circuit current in the small intestine of rat, chicken and hen.
    Vázquez A; Jordana R; Larralde J
    Rev Esp Fisiol; 1980 Dec; 36(4):449-55. PubMed ID: 7221167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of active transport of chloride and sodium by vanadate in the cornea.
    Candia OA; Podos SM
    Invest Ophthalmol Vis Sci; 1981 Jun; 20(6):733-7. PubMed ID: 6972370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride secretion by porcine ciliary epithelium: New insight into species similarities and differences in aqueous humor formation.
    Kong CW; Li KK; To CH
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5428-36. PubMed ID: 17122133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active transport of potassium by insect midgut.
    Blankemeyer JT
    Fed Proc; 1981 Jul; 40(9):2412-6. PubMed ID: 6265291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hydrostatic and colloid-osmotic pressure on electrical potential and short-circuit current across the explanted rabbit cornea.
    Ehlers N; Ehlers D
    Acta Ophthalmol (Copenh); 1968; 46(4):767-78. PubMed ID: 5755697
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of pH on potential difference and short circuit current in the isolated human cornea.
    Fischer F; Voigt G; Liegl O; Wiederholt M
    Pflugers Arch; 1974 Jun; 349(2):119-31. PubMed ID: 4211961
    [No Abstract]   [Full Text] [Related]  

  • 12. Intraocular irrigating and replacement fluid.
    Graham MV; Hodson S
    Trans Ophthalmol Soc U K (1962); 1980 Jul; 100(Pt 2):282-5. PubMed ID: 6943850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylcholine concentration and its role in ionic transport by the corneal epithelium.
    Pesin SR; Candia OA
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):651-9. PubMed ID: 6978868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Objective express method of determining corneal viability during the process of preservation].
    Trinchuk VV
    Oftalmol Zh; 1980; 35(2):105-8. PubMed ID: 6995888
    [No Abstract]   [Full Text] [Related]  

  • 15. [Physiology of the cornea: stromal hydration and its regulation].
    Delbosc B; Piquot X; Erbezci M
    J Fr Ophtalmol; 1993; 16(2):129-36. PubMed ID: 8388417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine modulation of active ion transport in rabbit corneal epithelium.
    Crosson CE; Beuerman RW; Klyce SD
    Invest Ophthalmol Vis Sci; 1984 Nov; 25(11):1240-5. PubMed ID: 6208162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active transport of Ca ions across the rabbit cornea.
    EZUKA K; KIKKAWA Y; KUROSAWA K; OKADA N
    Jpn J Physiol; 1960 Apr; 10():204-10. PubMed ID: 13821168
    [No Abstract]   [Full Text] [Related]  

  • 18. Conductance of epithelial tissues with particular reference to the frog's cornea and gastric mucosa.
    Rehm WS; Shoemaker RL; Sanders SS; Tarvin JT; Wright JA; Friday EA
    Exp Eye Res; 1973 May; 15(5):533-52. PubMed ID: 4712546
    [No Abstract]   [Full Text] [Related]  

  • 19. Current-voltage properties of the active sodium transport pathway across rabbit colon.
    Thompson SM; Suzuki Y; Schultz SG
    Soc Gen Physiol Ser; 1981; 36():47-59. PubMed ID: 6269229
    [No Abstract]   [Full Text] [Related]  

  • 20. Resting potential of isolated beef cornea.
    Lindemann B
    Exp Eye Res; 1968 Jan; 7(1):62-9. PubMed ID: 5640367
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.