These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 5068496)

  • 1. [Fluorescence-microscopical counting of soil bacteria. II. Statistical considerations about a technique for counting soil bacteria in smears].
    Trolldenier G; Schäfer P
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1972; 127(1):41-51. PubMed ID: 5068496
    [No Abstract]   [Full Text] [Related]  

  • 2. [Fluorescence-microscopical counting of soil bacteria. I. Historical survey and description of a technique for counting soil bacteria in smears after staining with acridine orange].
    Trolldenier G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1972; 127(1):25-40. PubMed ID: 5068495
    [No Abstract]   [Full Text] [Related]  

  • 3. [Temporal and spatial fluctuations in the count of soil bacteria considered by a luminescence method].
    Zaĭtseva VE; Zviagintsev DG
    Mikrobiologiia; 1978; 47(2):342-6. PubMed ID: 351342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acridine orange-epifluorescence technique for counting bacteria in natural waters.
    Francisco DE; Mah RA; Rabin AC
    Trans Am Microsc Soc; 1973 Jul; 92(3):416-21. PubMed ID: 4581469
    [No Abstract]   [Full Text] [Related]  

  • 5. [Chemical methods of evaluation of quantitative occurrence of bacteria and algae in the soil].
    Steubing L
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 124(3):245-9. PubMed ID: 4918799
    [No Abstract]   [Full Text] [Related]  

  • 6. Routine fluorescence in situ hybridization in soil.
    Bertaux J; Gloger U; Schmid M; Hartmann A; Scheu S
    J Microbiol Methods; 2007 Jun; 69(3):451-60. PubMed ID: 17442439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhizo-zoogleae at the soil-plant interface: (Fluorescence- and polarization-microscopical insight).
    Pauli FW
    Mikroskopie; 1980 Oct; 36(7-8):213-21. PubMed ID: 7465059
    [No Abstract]   [Full Text] [Related]  

  • 8. Rapid and automated enumeration of viable bacteria in compost using a micro-colony auto counting system.
    Wang X; Yamaguchi N; Someya T; Nasu M
    J Microbiol Methods; 2007 Oct; 71(1):1-6. PubMed ID: 17669529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The biometric analysis of bacteria in soil].
    Guzev VS; Zviagintsev DG
    Mikrobiologiia; 2003; 72(2):221-7. PubMed ID: 12751247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Counting of soil bacteria by direct microscopy in white light & in fluorescence].
    AUGIER J; POCHON J
    Ann Inst Pasteur (Paris); 1958 May; 94(5):615-20. PubMed ID: 13534059
    [No Abstract]   [Full Text] [Related]  

  • 11. [Estimating the density of bacteria populations with the fluorescence microscope].
    Stohr G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1970; 125(4):415-25. PubMed ID: 4100971
    [No Abstract]   [Full Text] [Related]  

  • 12. [Morphometric analysis of bacteria associated with soil Myriapoda].
    Guzev VS; Byzov BA
    Mikrobiologiia; 2006; 75(2):264-70. PubMed ID: 16758876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples.
    Martín M; Gibello A; Lobo C; Nande M; Garbi C; Fajardo C; Barra-Caracciolo A; Grenni P; Martínez-Iñigo MJ
    Chemosphere; 2008 Mar; 71(4):703-10. PubMed ID: 18082866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Biological counting of soil bacteria; a new method of evaluation: kinetic counting. I. General aspects].
    AUGIER J; LAVERGNE D
    Ann Inst Pasteur (Paris); 1958 Sep; 95(3):343-53. PubMed ID: 13583655
    [No Abstract]   [Full Text] [Related]  

  • 15. Microbial diversity and activity along the forefields of two receding glaciers.
    Sigler WV; Zeyer J
    Microb Ecol; 2002 May; 43(4):397-407. PubMed ID: 11953808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivating previously uncultured soil bacteria using a soil substrate membrane system.
    Ferrari BC; Winsley T; Gillings M; Binnerup S
    Nat Protoc; 2008; 3(8):1261-9. PubMed ID: 18714294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescence-based assay for measuring the viable cell concentration of mixed microbial communities in soil.
    Pascaud A; Amellal S; Soulas ML; Soulas G
    J Microbiol Methods; 2009 Jan; 76(1):81-7. PubMed ID: 18926862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [On the fitness of earth-containing nutrient media for the counting and isolation of soil microorganisms on membrane filters].
    Trolldenier G
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1966; 120(5):496-508. PubMed ID: 6013390
    [No Abstract]   [Full Text] [Related]  

  • 19. [Comparative studies on various methods for the quantative determination of soil microflora].
    Prasad M
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1968 Jul; 122(4):341-56. PubMed ID: 4900283
    [No Abstract]   [Full Text] [Related]  

  • 20. [Quantitative determination of soil microflora with the Koch method. II. Effect of the duration of shaking on soil dispersion and total bacterial count and demonstration of the dispersing effect by sedimentation tests].
    Singh-Verma SB
    Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1968 Jul; 122(4):386-400. PubMed ID: 4900285
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.