These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 5070057)

  • 1. Comparative aspects of incorporation of vanadium, tungsten or molybdenum into protein of nitrate reductase of Spinacea oleracea L. leaves.
    Notton BA; Hewitt EJ
    Biochim Biophys Acta; 1972 Sep; 275(3):355-7. PubMed ID: 5070057
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of tungsten in the inhibition of nitrate reductase activity in spinach (spinacea oleracea L.) leaves.
    Notton BA; Hewitt EJ
    Biochem Biophys Res Commun; 1971 Aug; 44(3):702-10. PubMed ID: 4107835
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of tungsten and vanadium on the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1.
    Lee KY; Erickson R; Pan SS; Jones G; May F; Nason A
    J Biol Chem; 1974 Jun; 249(12):3953-9. PubMed ID: 4151950
    [No Abstract]   [Full Text] [Related]  

  • 4. The role of molybdenum in the synthesis of nitrate reductase in cauliflower (Brassica oleracea L. var Botrytis L.) and spinach (Spinacea oleracea L.).
    Notton BA; Graf L; Hewitt EJ; Povey RC
    Biochim Biophys Acta; 1974 Sep; 364(1):45-58. PubMed ID: 4474017
    [No Abstract]   [Full Text] [Related]  

  • 5. EFFECTS OF CULTURAL CONDITIONS ON NITRATE REDUCTASE IN PHOTOBACTERIUM SEPIA.
    NICHOLAS DJ; REDMOND WJ; WRIGHT MA
    J Gen Microbiol; 1964 Jun; 35():401-10. PubMed ID: 14188767
    [No Abstract]   [Full Text] [Related]  

  • 6. Molybdenum and iron as functional consitituents of the enzymes of the nitrate-reducing system of Azotobacter chroococcum.
    Guerrero MG; Vega JM
    Arch Microbiol; 1975; 102(2):91-4. PubMed ID: 1115563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational replacement of molybdenum by vanadium in assimilation of N2 or NO3- as nitrogen source in the cyanobacterium Nostoc muscorum.
    Singh S; Chakravarty D; Singh HN
    Biochem Mol Biol Int; 1993 Apr; 29(6):1083-93. PubMed ID: 8330016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli.
    Enoch HG; Lester RL
    J Bacteriol; 1972 Jun; 110(3):1032-40. PubMed ID: 4555402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus.
    Mukund S; Adams MW
    J Bacteriol; 1996 Jan; 178(1):163-7. PubMed ID: 8550411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely Thermoacidophilic
    Wheaton GH; Vitko NP; Counts JA; Dulkis JA; Podolsky I; Mukherjee A; Kelly RM
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromate, molybdate, tungstate and vanadate behave as substrates of yeast diadenosine 5',5'''-p1,p4-tetraphosphate alpha, beta-phosphorylase.
    Guranowski A; Blanquet S
    Biochimie; 1986 May; 68(5):757-60. PubMed ID: 3015260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhibition of molybdenum-dependent nitrate reductase by wolfram in Neurospora crassa].
    AURICH H
    Arch Mikrobiol; 1959; 33(1):46-8. PubMed ID: 13650586
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of the nitrate assimilation pathway in cultured tobacco cells. 3. The nitrate uptake system.
    Heimer YM; Filner P
    Biochim Biophys Acta; 1971 Feb; 230(2):362-72. PubMed ID: 5573364
    [No Abstract]   [Full Text] [Related]  

  • 14. Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site.
    Stewart LJ; Bailey S; Bennett B; Charnock JM; Garner CD; McAlpine AS
    J Mol Biol; 2000 Jun; 299(3):593-600. PubMed ID: 10835270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of molybdenum in formation of the NADPH-nitrate reductase by Aspergillus nidulans.
    Downey RJ
    Biochem Biophys Res Commun; 1973 Feb; 50(3):920-5. PubMed ID: 4144009
    [No Abstract]   [Full Text] [Related]  

  • 16. [Proteins of the lupin family, binding molybdenum, tungsten, and radionuclide effluents from the Chernobyl Atomic Energy Station].
    Kalakutskiĭ KL; Zabolotnyĭ AI; L'vov NP
    Biokhimiia; 1991 Jul; 56(7):1220-7. PubMed ID: 1932349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of tungsten on uptake, transport and subcellular distribution of molybdenum in oilseed rape at two different molybdenum levels.
    Qin S; Sun X; Hu C; Tan Q; Zhao X; Xu S
    Plant Sci; 2017 Mar; 256():87-93. PubMed ID: 28167042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and-or xanthine dehydrogenase.
    Arst HN; MacDonald DW; Cove DJ
    Mol Gen Genet; 1970; 108(2):129-45. PubMed ID: 5475567
    [No Abstract]   [Full Text] [Related]  

  • 19. Kinetics and inhibition by adenosine phosphates and nitrite of nitrate reductase from Spinacea oleracea L.
    Eaglesham AR; Hewitt EJ
    Biochem J; 1971 Mar; 122(1):18P-19P. PubMed ID: 4330963
    [No Abstract]   [Full Text] [Related]  

  • 20. Nucleic acid and protein synthesis associated with the induction of nitrate reductase activity in radish cotyledons.
    Ingle J
    Biochem J; 1968 Aug; 108(5):715-24. PubMed ID: 5673523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.