These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5070082)

  • 1. Combined effects of maltose and deoxyglucose on fluorodinitrobenzene inactivation of sugar transport in erythrocytes.
    Krupka RM
    Biochim Biophys Acta; 1972 Sep; 282(1):326-36. PubMed ID: 5070082
    [No Abstract]   [Full Text] [Related]  

  • 2. Evidence for a carrier conformational change associated with sugar transport in erythrocytes.
    Krupka RM
    Biochemistry; 1971 Mar; 10(7):1143-8. PubMed ID: 5553320
    [No Abstract]   [Full Text] [Related]  

  • 3. The inactivation by fluorodinitrobenzene of glucose transport across the human erythrocyte membrane. The effect of glucose inside or outside the cell.
    Edwards PA
    Biochim Biophys Acta; 1973 May; 307(2):415-8. PubMed ID: 4711194
    [No Abstract]   [Full Text] [Related]  

  • 4. Aspects of competitive inhibition.
    Widdas WF
    Biomembranes; 1972; 3():101-5. PubMed ID: 4666507
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of sugar transport in erythrocytes by fluorodinitrobenzene.
    Krupka RM
    Biochemistry; 1971 Mar; 10(7):1148-53. PubMed ID: 5553321
    [No Abstract]   [Full Text] [Related]  

  • 6. Inactivation of glucose carriers in human erythrocyte membranes by 1-fluoro-2,4-dinitrobenzene.
    Jung CY
    J Biol Chem; 1974 Jun; 249(11):3568-73. PubMed ID: 4831230
    [No Abstract]   [Full Text] [Related]  

  • 7. Cross-linking of phospholipids to proteins in the erythrocyte membrane.
    Marinetti GV; Baumgarten R; Sheeley D; Gordesky S
    Biochem Biophys Res Commun; 1973 Jul; 53(1):302-8. PubMed ID: 4741549
    [No Abstract]   [Full Text] [Related]  

  • 8. Preferential uptake of D-glucose by isolated human erythrocyte membranes.
    Kahlenberg A; Urman B; Dolansky D
    Biochemistry; 1971 Aug; 10(16):3154-62. PubMed ID: 5126931
    [No Abstract]   [Full Text] [Related]  

  • 9. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

  • 10. Human erythrocyte sugar transport. Identification of the essential residues of the sugar carrier by specific modification.
    Bloch R
    J Biol Chem; 1974 Mar; 249(6):1814-22. PubMed ID: 4817966
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of temperature on sulfate movements across chemically or enzymatically modified membranes of human red blood cells.
    Schwoch G; Rudloff V; Wood-Guth I; Passow H
    Biochim Biophys Acta; 1974 Feb; 339(1):126-38. PubMed ID: 4851700
    [No Abstract]   [Full Text] [Related]  

  • 12. Mediated transport of nucleosides in human erythrocytes. Specific binding of the inhibitor nitrobenzylthioinosine to nucleoside transport sites in the erythrocyte membrane.
    Cass CE; Gaudette LA; Paterson AR
    Biochim Biophys Acta; 1974 Apr; 345(1):1-10. PubMed ID: 4838202
    [No Abstract]   [Full Text] [Related]  

  • 13. The use of sugars and fluorodinitrobenzene (FDNB) to differentially label red cell membrane components involved in hexose transfers.
    Eady RP; Widdas WF
    Q J Exp Physiol Cogn Med Sci; 1973 Jan; 58(1):59-66. PubMed ID: 4486761
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for two asymmetric conformational states in the human erythrocyte sugar-transport system.
    Barnett JE; Holman GD; Chalkley RA; Munday KA
    Biochem J; 1975 Mar; 145(3):417-29. PubMed ID: 1156368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glucose transport in the human erythrocyte by cytochalasin B.
    Bloch R
    Biochemistry; 1973 Nov; 12(23):4799-801. PubMed ID: 4773858
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation of a glucose-binding component from human erythrocyte membranes.
    Bobinski H; Stein WD
    Nature; 1966 Sep; 211(5056):1366-8. PubMed ID: 5969828
    [No Abstract]   [Full Text] [Related]  

  • 17. Retention of K+ gradients in imidoester cross-linked erythrocyte membranes.
    Krinsky NI; Bymun EN; Packer L
    Arch Biochem Biophys; 1974 Jan; 160(1):350-2. PubMed ID: 4828529
    [No Abstract]   [Full Text] [Related]  

  • 18. An explanation of the asymmetric binding of sugars to the human erythrocyte sugar-transport systems.
    Barnett JE; Holman GD; Munday KA
    Biochem J; 1973 Nov; 135(3):539-41. PubMed ID: 4772277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrobenzylthionionosine binding sites in the erythrocyte membrane.
    Cass CE; Paterson AR
    Biochim Biophys Acta; 1976 Jan; 419(2):285-94. PubMed ID: 1247556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of proteins involved in the permeability of the erythrocyte membrane to ions.
    Rothstein A; Takeshita M; Knauf PA
    Biomembranes; 1972; 3():393-413. PubMed ID: 4580645
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.