These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 5070218)

  • 41. Sensory funneling. I. Psychophysical observations of human subjects and responses of cutaneous mechanoreceptive afferents in the cat to patterned skin stimuli.
    Gardner EP; Spencer WA
    J Neurophysiol; 1972 Nov; 35(6):925-53. PubMed ID: 4654255
    [No Abstract]   [Full Text] [Related]  

  • 42. Electrophysiological evidence for a mossy fiber input to the cerebellar cortex activated indirectly by collaterals of spinocerebellar pathways.
    Bloedel JR; Burton JE
    J Neurophysiol; 1970 Mar; 33(2):308-19. PubMed ID: 4313289
    [No Abstract]   [Full Text] [Related]  

  • 43. Functional significance of connections of the inferior olive.
    Armstrong DM
    Physiol Rev; 1974 Apr; 54(2):358-417. PubMed ID: 4362162
    [No Abstract]   [Full Text] [Related]  

  • 44. Cortical and peripheral modification of cerebellar climbing fibre activity arising from cutaneous mechanoreceptors.
    Leicht R; Rowe MJ; Schmidt RF
    J Physiol; 1973 Feb; 228(3):619-35. PubMed ID: 4702149
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Somatotopic organization of climbing fiber projections from low threshold cutaneous afferents to pars intermedia of cerebellar cortex in the cat.
    Rushmer DS; Woollacott MH; Robertson LT; Laxer KD
    Brain Res; 1980 Jan; 181(1):17-30. PubMed ID: 7350952
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Axons of dorsal spinocerebellar tract which respond to activity in cutaneous receptors.
    Mann MD
    J Neurophysiol; 1971 Nov; 34(6):1035-50. PubMed ID: 4329962
    [No Abstract]   [Full Text] [Related]  

  • 47. Cortical information processing of stimulus motion on primate skin.
    Whitsel BL; Roppolo JR; Werner G
    J Neurophysiol; 1972 Sep; 35(5):691-717. PubMed ID: 4626588
    [No Abstract]   [Full Text] [Related]  

  • 48. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. II. In Purkynĕ cells.
    Eccles JC; Faber DS; Murphy JT; Sabah NH; Táboríková H
    Exp Brain Res; 1971 Jul; 13(1):36-53. PubMed ID: 5570422
    [No Abstract]   [Full Text] [Related]  

  • 49. Spatial distribution of field potential profiles in the cat cerebellar cortex evoked by peripheral and central inputs.
    Kolb FP; Arnold G; Lerch R; Straka H; Büttner-Ennever J
    Neuroscience; 1997 Dec; 81(4):1155-81. PubMed ID: 9330375
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cutaneous convergence on to the climbing fibre input to cerebellar Purkynĕ cells.
    Leicht R; Rowe MJ; Schmidt RF
    J Physiol; 1973 Feb; 228(3):601-18. PubMed ID: 4702148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Organization of climbing fibre projections to the cerebellar cortex from trigeminal cutaneous afferents and from the SI face area of the cerebral cortex in the cat.
    Miles TS; Wiesendanger M
    J Physiol; 1975 Feb; 245(2):409-24. PubMed ID: 1142174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tactile cutaneous representation in cerebellar granule cell layer of the opossum, Didelphis virginiana.
    Welker W; Shambes GM
    Brain Behav Evol; 1985; 27(2-4):57-79. PubMed ID: 3843070
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contributions by individual guard hairs and their interactions in response of forelimb guard hair afferent unit.
    Goldfinger MD; Amassian VE
    J Neurophysiol; 1980 Nov; 44(5):979-1001. PubMed ID: 7441326
    [No Abstract]   [Full Text] [Related]  

  • 54. Differences between cerebellar mossy and climbing fibre responses to natural stimulation of forelimb muscle proprioceptors.
    Murphy JT; MacKay WA; Johnson F
    Brain Res; 1973 Jun; 55(2):263-89. PubMed ID: 4351625
    [No Abstract]   [Full Text] [Related]  

  • 55. Morphology of rapidly and slowly adapting mechanoreceptors in the hairless skin of the cat's hind foot.
    Jänig W
    Brain Res; 1971 May; 28(2):217-31. PubMed ID: 4107095
    [No Abstract]   [Full Text] [Related]  

  • 56. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. II. In Purkynè cells.
    Eccles JC; Faber DS; Murphy JT; Sabah NH; Táboríková H
    Exp Brain Res; 1971 Jul; 13(1):36-53. PubMed ID: 4328334
    [No Abstract]   [Full Text] [Related]  

  • 57. Cerebellar evoked potentials from 'C' fibers.
    VanGilder JC
    Brain Res; 1975 Jun; 90(2):302-6. PubMed ID: 1139309
    [No Abstract]   [Full Text] [Related]  

  • 58. Dependence of the response characteristics of glabrous rapidly adapting units in the cat on the stratum corneum.
    Ogawa H; Iggo A
    Brain Res; 1977 Apr; 126(1):167-71. PubMed ID: 851890
    [No Abstract]   [Full Text] [Related]  

  • 59. Correlation between sagittal projection zones of climbing and mossy fibre paths in cat cerebellar anterior lobe.
    Ekerot CF; Larson B
    Brain Res; 1973 Dec; 64():446-50. PubMed ID: 4781353
    [No Abstract]   [Full Text] [Related]  

  • 60. Functional relation between corticonuclear input and movements evoked on microstimulation in cerebellar nucleus interpositus anterior in the cat.
    Ekerot CF; Jörntell H; Garwicz M
    Exp Brain Res; 1995; 106(3):365-76. PubMed ID: 8983981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.