These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 50705)

  • 1. [The biomechanics of hyaline cartilage under distension stress].
    Hartung C; Arnold G; Gross F
    Acta Anat (Basel); 1975; 91(4):583-93. PubMed ID: 50705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Histomechanical studies on test specimens from hyaline cartilage under compressive loading with regard to rheology (author's transl)].
    Arnold G; Gressner AM; Gross F; Clahsen H; Moll C; Fessel H
    Wien Klin Wochenschr; 1978 Feb; 90(3):97-101. PubMed ID: 622838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation and rupture of the articular surface under dynamic and static compression.
    Flachsmann R; Broom ND; Hardy AE
    J Orthop Res; 2001 Nov; 19(6):1131-9. PubMed ID: 11781015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The structure and physicochemical properties of human hyaline cartilage in the disorganization of the carbohydrate-protein complexes of the ground substance].
    Dubinskaia VA; Nikolaeva SS; Khoroshkov IuA; Koroleva OA
    Biull Eksp Biol Med; 1991 Mar; 111(3):267-9. PubMed ID: 1711388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.
    Franke O; Durst K; Maier V; Göken M; Birkholz T; Schneider H; Hennig F; Gelse K
    Acta Biomater; 2007 Nov; 3(6):873-81. PubMed ID: 17586107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive nanomechanics of opposing aggrecan macromolecules.
    Dean D; Han L; Grodzinsky AJ; Ortiz C
    J Biomech; 2006; 39(14):2555-65. PubMed ID: 16289077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem.
    Frost HM
    Anat Rec; 1990 Apr; 226(4):423-32. PubMed ID: 1691901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biomechanical properties (compressive strength and compressive pressure at break) of hyaline cartilage under axial load].
    Spahn G; Wittig R
    Zentralbl Chir; 2003 Jan; 128(1):78-82. PubMed ID: 12594619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biomechanical, morphologic, and histochemical properties of the costal cartilages in children with pectus excavatum.
    Feng J; Hu T; Liu W; Zhang S; Tang Y; Chen R; Jiang X; Wei F
    J Pediatr Surg; 2001 Dec; 36(12):1770-6. PubMed ID: 11733904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The contribution of the perichondrium to the structural mechanical behavior of the costal-cartilage.
    Forman JL; del Pozo de Dios E; Dalmases CA; Kent RW
    J Biomech Eng; 2010 Sep; 132(9):094501. PubMed ID: 20815649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Histomechanical behaviour of hyaline cartilage under cyclic deformations (author's transl)].
    Arnold G; Hartung C
    Z Anat Entwicklungsgesch; 1974; 144(3):303-13. PubMed ID: 4409722
    [No Abstract]   [Full Text] [Related]  

  • 13. Deformation of articular cartilage collagen structure under static and cyclic loading.
    Kääb MJ; Ito K; Clark JM; Nötzli HP
    J Orthop Res; 1998 Nov; 16(6):743-51. PubMed ID: 9877400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress relaxation behavior of mandibular condylar cartilage under high-strain compression.
    Singh M; Detamore MS
    J Biomech Eng; 2009 Jun; 131(6):061008. PubMed ID: 19449962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-dependent viscoelastic behaviour and rupture force of single chondrocytes and chondrons under compression.
    Nguyen BV; Wang Q; Kuiper NJ; El Haj AJ; Thomas CR; Zhang Z
    Biotechnol Lett; 2009 Jun; 31(6):803-9. PubMed ID: 19205892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of collagen fibers to the compressive stiffness of cartilaginous tissues.
    Römgens AM; van Donkelaar CC; Ito K
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1221-31. PubMed ID: 23443749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of intermittent cyclic preloads on the response of articular cartilage explants to an excessive level of unconfined compression.
    Wei F; Golenberg N; Kepich ET; Haut RC
    J Orthop Res; 2008 Dec; 26(12):1636-42. PubMed ID: 18524003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of temperature dependent mechanical behavior of cartilage.
    Chae Y; Aguilar G; Lavernia EJ; Wong BJ
    Lasers Surg Med; 2003; 32(4):271-8. PubMed ID: 12696094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of cartilage mechanical properties in absence of β1 integrins revealed by rheometry and FRAP analyses.
    Bougault C; Cueru L; Bariller J; Malbouyres M; Paumier A; Aszodi A; Berthier Y; Mallein-Gerin F; Trunfio-Sfarghiu AM
    J Biomech; 2013 Jun; 46(10):1633-40. PubMed ID: 23692868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy.
    Tripathy S; Berger EJ
    Comput Methods Biomech Biomed Engin; 2012; 15(5):475-86. PubMed ID: 22432922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.