These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Post-mortem changes in myocardial aminoacyl synthetase, transferring enzyme activity and ribosomal activity. Gibson K; Harris P Res Commun Chem Pathol Pharmacol; 1972 Mar; 3(2):359-67. PubMed ID: 4679856 [No Abstract] [Full Text] [Related]
3. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. The role of guanosine triphosphate. Hradec J Biochem J; 1972 Feb; 126(4):933-43. PubMed ID: 5073244 [TBL] [Abstract][Full Text] [Related]
4. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. Formation and properties of an aminoacyl-transfer ribonucleic acid-transferase I complex. Hradec J Biochem J; 1972 Feb; 126(4):923-31. PubMed ID: 5073243 [TBL] [Abstract][Full Text] [Related]
5. Dietary protein intake and skeletal-muscle protein metabolism in rats. Studies with salt-washed ribosomes and transfer factors. Alexis SD; Basta S; Young VR Biochem J; 1972 Jul; 128(3):521-30. PubMed ID: 4634827 [TBL] [Abstract][Full Text] [Related]
6. Peptide bond formation on the ribosome. Structural requirements for inhibition of protein synthesis and of release of peptides from peptidyl-tRNA on bacterial and mammalian ribosomes by aminoacyl and nucleotidyl analogues of puromycin. Harris RJ; Hanlon JE; Symons RH Biochim Biophys Acta; 1971 Jun; 240(2):244-62. PubMed ID: 4934602 [No Abstract] [Full Text] [Related]
7. Incorporation of labelled amino acids into proteins, from rabbit reticulocytes, retained on heparin-sepharose. Hradec J Biochim Biophys Acta; 1980 Dec; 610(2):285-96. PubMed ID: 6908534 [TBL] [Abstract][Full Text] [Related]
8. Aminoacyl-tRNA synthetase activities specific to twenty amino acids in rat, rabbit and human myocardium. Gibson K; Harris P J Mol Cell Cardiol; 1973 Oct; 5(5):419-25. PubMed ID: 4762146 [No Abstract] [Full Text] [Related]
9. Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells. Ussery MA; Tanaka WK; Hardesty B Eur J Biochem; 1977 Feb; 72(3):491-500. PubMed ID: 837925 [TBL] [Abstract][Full Text] [Related]
10. The effects of pulmonary arterial constriction on myocardial aminoacyl-tRNA synthetase and transferring enzyme activity. Gibson K; Harris P J Mol Cell Cardiol; 1972 Aug; 4(4):381-90. PubMed ID: 5052592 [No Abstract] [Full Text] [Related]
11. Inhibition of aminoacyl-tRNA synthetases from rat liver by reducing agents. Vargas R; CastaƱeda M Can J Biochem; 1973 Nov; 51(11):1537-41. PubMed ID: 4766141 [No Abstract] [Full Text] [Related]
12. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. the interaction of cholesteryl 14-methylhexadecanoate. Hradec J Biochem J; 1972 Mar; 126(5):1225-9. PubMed ID: 5073734 [TBL] [Abstract][Full Text] [Related]
13. Renaturation of rabbit liver aminoacyl-tRNA synthetases by 80S ribosomes. Turkovskaya HV; Belyanskaya LL; Kovalenko MI; El'skaya AV Int J Biochem Cell Biol; 1999 Jul; 31(7):759-68. PubMed ID: 10467732 [TBL] [Abstract][Full Text] [Related]
14. Characterization of aminoacyl transfer ribonucleic acid formation stimulated by polyamines. Takeda Y; Matsuzaki K; Igarashi K J Bacteriol; 1972 Jul; 111(1):1-6. PubMed ID: 4591475 [TBL] [Abstract][Full Text] [Related]
15. Sites of action of the KCl-soluble protein in the stimulation of protein synthesis in sea urchin systems. Mano Y; Kano K J Biochem; 1977 Mar; 81(3):757-69. PubMed ID: 863869 [TBL] [Abstract][Full Text] [Related]
16. Effect of chronic administration of morphine on mouse brain aminoacyl-tRNA synthetase and tRNA-amino acid binding. Datta RK; Antopol W Brain Res; 1973 Apr; 53(2):373-86. PubMed ID: 4574659 [No Abstract] [Full Text] [Related]
17. Intraction of aminoacyl-tRNA synthetases with ribosomes and ribosomal subunits. Graf H Biochim Biophys Acta; 1976 Mar; 425(2):175-84. PubMed ID: 1252498 [TBL] [Abstract][Full Text] [Related]
18. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds. Jakubowski H; Pawelkiewicz J Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427 [TBL] [Abstract][Full Text] [Related]