These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 5071667)
1. The fermentation of L-sorbose by Gluconobacter melanogenus. II. Inducible formation of enzyme catalyzing conversion of L-sorbose to 2-keto-L-gulonic acid. Tsukada Y; Perlman D Biotechnol Bioeng; 1972 Sep; 14(5):811-8. PubMed ID: 5071667 [No Abstract] [Full Text] [Related]
2. The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation. Tsukada Y; Perlman D Biotechnol Bioeng; 1972 Sep; 14(5):799-810. PubMed ID: 4403668 [No Abstract] [Full Text] [Related]
3. New mechanisms for the biosynthesis and metabolism of 2-keto-L-gulonic acid in bacteria. Makover S; Ramsey GB; Vane FM; Witt CG; Wright RB Biotechnol Bioeng; 1975 Oct; 17(10):1485-1514. PubMed ID: 1182275 [TBL] [Abstract][Full Text] [Related]
5. Stimulation by organic solvents and detergents of conversion of L-sorbose to L-sorbosone by Gluconobacter melanogenus IFO 3293. Martin CK; Perlman D Biotechnol Bioeng; 1975 Oct; 17(10):1473-83. PubMed ID: 171012 [TBL] [Abstract][Full Text] [Related]
6. [Production of vitamin C precursor--2-keto-L-gulonic acid from D-sorbitol by mixed culture of microorganisms]. Yin G; Lin W; Qiao C; Ye Q Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):709-15. PubMed ID: 12552828 [TBL] [Abstract][Full Text] [Related]
7. Conversion of L-sorbose to L-sorbosone by immobilized cells of Gluconobacter melanogenus IFO 3293. Martin CK; Perlman D Biotechnol Bioeng; 1976 Feb; 18(2):217-37. PubMed ID: 1252610 [TBL] [Abstract][Full Text] [Related]
8. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025. Sugisawa T; Miyazaki T; Hoshino T Biosci Biotechnol Biochem; 2005 Mar; 69(3):659-62. PubMed ID: 15785002 [TBL] [Abstract][Full Text] [Related]
9. Continuous 2-Keto-L-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia. Takagi Y; Sugisawa T; Hoshino T Appl Microbiol Biotechnol; 2010 Mar; 86(2):469-80. PubMed ID: 19902207 [TBL] [Abstract][Full Text] [Related]
10. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher temperature. Hattori H; Yakushi T; Matsutani M; Moonmangmee D; Toyama H; Adachi O; Matsushita K Appl Microbiol Biotechnol; 2012 Sep; 95(6):1531-40. PubMed ID: 22434571 [TBL] [Abstract][Full Text] [Related]
11. [Enhancement of 2-keto-L-gulonic acid production using three-stage pH control strategy]. Zhang J; Zhou J; Liu L; Liu J; Chen K; Du G; Chen J Sheng Wu Gong Cheng Xue Bao; 2010 Sep; 26(9):1263-8. PubMed ID: 21141117 [TBL] [Abstract][Full Text] [Related]
12. Systematic characterization of sorbose/sorbosone dehydrogenases and sorbosone dehydrogenases from Ketogulonicigenium vulgare WSH-001. Wang P; Zeng W; Du G; Zhou J; Chen J J Biotechnol; 2019 Aug; 301():24-34. PubMed ID: 31136757 [TBL] [Abstract][Full Text] [Related]
13. New developments in oxidative fermentation. Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142 [TBL] [Abstract][Full Text] [Related]
15. L-sorbose is not only a substrate for 2-keto-L-gulonic acid production in the artificial microbial ecosystem of two strains mixed fermentation. Mandlaa ; Yang W; Liu C; Xu H J Ind Microbiol Biotechnol; 2015 Jun; 42(6):897-904. PubMed ID: 25860124 [TBL] [Abstract][Full Text] [Related]
16. Crystallization and Properties of NADPH-Dependent L-Sorbose Reductase from Gluconobacter melanogenus IFO 3294. Adachi O; Ano Y; Moonmangmee D; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 1999; 63(12):2137-43. PubMed ID: 27373916 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Moonmangmee D; Adachi O; Ano Y; Shinagawa E; Toyama H; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2000 Nov; 64(11):2306-15. PubMed ID: 11193396 [TBL] [Abstract][Full Text] [Related]
18. Folate requirements of the 2-keto-L-gulonic acid-producing strain Ketogulonigenium vulgare LMP P-20356 in L-sorbose/CSL medium. Leduc S; de Troostembergh JC; Lebeault JM Appl Microbiol Biotechnol; 2004 Aug; 65(2):163-7. PubMed ID: 15293031 [TBL] [Abstract][Full Text] [Related]
19. Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of l-ascorbic acid manufacture by ion beam. Xu A; Yao J; Yu L; Lv S; Wang J; Yan B; Yu Z J Appl Microbiol; 2004; 96(6):1317-23. PubMed ID: 15139924 [TBL] [Abstract][Full Text] [Related]
20. Enhanced 2-keto-L-gulonic acid production by a mixed culture of Ketogulonicigenium vulgare and Bacillus megaterium using three-stage temperature control strategy. Yang W; Sun H; Dong D; Ma S; Mandlaa ; Wang Z; Xu H Braz J Microbiol; 2021 Mar; 52(1):257-265. PubMed ID: 33145708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]