These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 5071879)

  • 1. The pH dependence of exchange transport of glucose in human erythrocytes.
    Lacko L; Wittke B; Geck P
    J Cell Physiol; 1972 Aug; 80(1):73-8. PubMed ID: 5071879
    [No Abstract]   [Full Text] [Related]  

  • 2. Transfer of inorganic phosphate across human erythrocyte membranes.
    Schrier SL
    J Lab Clin Med; 1970 Mar; 75(3):422-34. PubMed ID: 4313673
    [No Abstract]   [Full Text] [Related]  

  • 3. [pH-dependence of the transport of D(+) glucose through the human erythrocyte membrane].
    Bolis L; Elia M; Luly P; Wilbrandt W
    Boll Chim Farm; 1969 Apr; 108(4):211-6. PubMed ID: 5806411
    [No Abstract]   [Full Text] [Related]  

  • 4. A comprehensive model of human erythrocyte metabolism: extensions to include pH effects.
    Lee ID; Palsson BO
    Biomed Biochim Acta; 1990; 49(8-9):771-89. PubMed ID: 2082921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of glucose transport in human erythrocytes by benzylalcohol.
    Lacko L; Wittke B; Lacko I
    J Cell Physiol; 1978 Aug; 96(2):199-201. PubMed ID: 27526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of chlorpromazine with the transport system of glucose in human erythrocytes.
    Lacko L; Wittke B; Lacko I
    Arzneimittelforschung; 1980; 30(11):1852-5. PubMed ID: 7192992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of high stability of the glucose transport carrier function in human red cell ghosts extensively washed in various media.
    Jung CY
    Arch Biochem Biophys; 1971 Sep; 146(1):215-26. PubMed ID: 5004123
    [No Abstract]   [Full Text] [Related]  

  • 8. [Significance and regulation of the pentosephosphate pathway in human erythrocytes].
    Brand K; Arese P; Rivera M
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):281. PubMed ID: 4392986
    [No Abstract]   [Full Text] [Related]  

  • 9. [Inorganic phosphate exchange rate and equilibrium distribution at the erythrocyte membrane at various temperatures].
    Böer HG; Stehle P; Roigas H; Jacobasch G; Rapoport S
    Acta Biol Med Ger; 1971; 26(2):225-37. PubMed ID: 5142860
    [No Abstract]   [Full Text] [Related]  

  • 10. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

  • 11. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Glycolysis of human erythrocytes and permeability to orthophosphate ions].
    Cartier P; Chedru J
    Bull Soc Chim Biol (Paris); 1966; 48(12):1421-37. PubMed ID: 5982799
    [No Abstract]   [Full Text] [Related]  

  • 13. Purification and properties of the human erythrocyte malic dehydrogenase. Utilization of L-malate by human erythrocytes.
    Snyder LM; Reddy WJ
    J Lab Clin Med; 1971 Mar; 77(3):459-69. PubMed ID: 5553730
    [No Abstract]   [Full Text] [Related]  

  • 14. Dehydration and delayed proton equilibria of red blood cells suspended in isosmotic phosphate buffers. Implications for studies of sickled cells.
    Bookchin RM; Lew DJ; Balazs T; Ueda Y; Lew VL
    J Lab Clin Med; 1984 Dec; 104(6):855-66. PubMed ID: 6094692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphate transport across brush border and basolateral membrane vesicles of small intestine.
    Danisi G; van Os CH; Straub RW
    Prog Clin Biol Res; 1984; 168():229-34. PubMed ID: 6514734
    [No Abstract]   [Full Text] [Related]  

  • 16. A new approach for determining red cell life span by incorporating C 14 -glucose into glycosphingolipids of membrane.
    Krivit W
    J Lab Clin Med; 1971 Oct; 78(4):656-63. PubMed ID: 5114058
    [No Abstract]   [Full Text] [Related]  

  • 17. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086
    [No Abstract]   [Full Text] [Related]  

  • 18. Modifying effects of anions on the alkali-cation-activated AMP deaminase of human erythrocyte.
    Askari A
    Mol Pharmacol; 1966 Nov; 2(6):518-25. PubMed ID: 5966650
    [No Abstract]   [Full Text] [Related]  

  • 19. Action of orthophosphate on rabbit red blood cell hexokinase.
    Magnani M; Stocchi V; Dachà M; Fornaini G
    Ital J Biochem; 1981; 30(3):217-28. PubMed ID: 6974156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure of equilibrium dialysis to show selective monosaccharide binding by erythrocyte membranes.
    Masiak SJ; LeFevre PG
    J Membr Biol; 1972; 9(3):291-6. PubMed ID: 5085304
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.