These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 5075156)
1. Some electrical properties of distal tubular epithelium in the rat. Malnic G; Giebisch G Am J Physiol; 1972 Oct; 223(4):797-808. PubMed ID: 5075156 [No Abstract] [Full Text] [Related]
2. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Malnic G; Klose RM; Giebisch G Am J Physiol; 1966 Sep; 211(3):548-59. PubMed ID: 5927881 [No Abstract] [Full Text] [Related]
3. Recent advances in electrophysiology of the nephron. Boulpaep EL Annu Rev Physiol; 1976; 38():21-36. PubMed ID: 769655 [No Abstract] [Full Text] [Related]
4. Transmembrane transport of chloride and iodide in proximal rat tubules. Danielson BG; Persson E; Ulfendahl HR Acta Physiol Scand; 1970 Mar; 78(3):339-46. PubMed ID: 5449076 [No Abstract] [Full Text] [Related]
6. Model of active transepithelial Na and K transport of renal collecting tubules. Helman SI; O'Neil RG Am J Physiol; 1977 Dec; 233(6):F559-71. PubMed ID: 596454 [No Abstract] [Full Text] [Related]
7. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Boulpaep EL; Seely JF Am J Physiol; 1971 Oct; 221(4):1084-96. PubMed ID: 5111249 [No Abstract] [Full Text] [Related]
8. Coupled ion and fluid transport in the kidney. Giebisch G N Engl J Med; 1972 Nov; 287(18):913-9. PubMed ID: 4561670 [No Abstract] [Full Text] [Related]
9. Ion activity measurements in single renal tubules. Giebisch G; Cemerikic D; Oberleithner H; Guggino W; Biagi B Soc Gen Physiol Ser; 1981; 36():163-79. PubMed ID: 6269226 [No Abstract] [Full Text] [Related]
10. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Malnic G; Klose RM; Giebisch G Am J Physiol; 1966 Sep; 211(3):529-47. PubMed ID: 5927880 [No Abstract] [Full Text] [Related]
11. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron. Greger R Physiol Rev; 1985 Jul; 65(3):760-97. PubMed ID: 2409564 [No Abstract] [Full Text] [Related]
12. Measurement of intracellular ionic composition and activities in renal tubules. Boron WF; Sackin H Annu Rev Physiol; 1983; 45():483-96. PubMed ID: 6342522 [No Abstract] [Full Text] [Related]
13. The transport of halide ions across the membrane of distal rat tubules. Danielson BG; Persson E; Ulfendahl HR Acta Physiol Scand; 1970 Mar; 78(3):347-52. PubMed ID: 5449077 [No Abstract] [Full Text] [Related]
14. Effect of potassium adaptation on the distribution of potassium, sodium and chloride across the apical membrane of renal tubular cells. Beck FX; Dörge A; Rick R; Schramm M; Thurau K Pflugers Arch; 1987 Aug; 409(4-5):477-85. PubMed ID: 3627964 [TBL] [Abstract][Full Text] [Related]
16. [Functional properties of surface membranes of excitable cells and metabolism]. Kostiuk PG Fiziol Zh; 1970; 16(2):155-60. PubMed ID: 5486586 [No Abstract] [Full Text] [Related]
17. Active ion transport by isolated gastric mucosae of rat and guinea pig. Sernka TJ; Hogben CA Am J Physiol; 1969 Nov; 217(5):1419-24. PubMed ID: 5346308 [No Abstract] [Full Text] [Related]
18. Ion transport in cortical collecting tubule; effect of amiloride. Stoner LC; Burg MB; Orloff J Am J Physiol; 1974 Aug; 227(2):453-9. PubMed ID: 4852566 [No Abstract] [Full Text] [Related]
19. Electrophysiology of sodium-coupled transport in proximal renal tubules. Lang F; Messner G; Rehwald W Am J Physiol; 1986 Jun; 250(6 Pt 2):F953-62. PubMed ID: 3521326 [TBL] [Abstract][Full Text] [Related]
20. Electrophysiology of mammalian renal tubules: inferences from intracellular microelectrode studies. Koeppen BM; Giebisch G; Biagi BA Annu Rev Physiol; 1983; 45():497-517. PubMed ID: 6303207 [No Abstract] [Full Text] [Related] [Next] [New Search]