These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 5076224)

  • 1. Mechanism of inhibition of fatty acid oxidation by pent-4-enoic acid: 3-oxoacyl-coenzyme A thiolase as the possible site of inhibition.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1972 Apr; 127(3):79P-80P. PubMed ID: 5076224
    [No Abstract]   [Full Text] [Related]  

  • 2. Mechanisms of inhibition of fatty acid oxidation by pent-4-enoic acid: evidence against the coenzyme A-depletion hypothesis.
    Holland PC; Sherratt HS
    Biochem J; 1972 Apr; 127(3):79P. PubMed ID: 5076223
    [No Abstract]   [Full Text] [Related]  

  • 3. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1973 Sep; 136(1):173-84. PubMed ID: 4797895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of thiolases from pig heart. Control of fatty acid oxidation in heart.
    Olowe Y; Schulz H
    Eur J Biochem; 1980 Aug; 109(2):425-9. PubMed ID: 6105961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of pent-4-enoic acid and some simple related compounds on the oxidation of fatty acids by rat-liver mitochondria.
    Senior AE; Sherratt HS
    Biochem J; 1967 Sep; 104(3):56P. PubMed ID: 6049894
    [No Abstract]   [Full Text] [Related]  

  • 6. Biochemical effects of the hypoglycaemic compound pent--4-enoic acid and related non-hypoglycaemic fatty acids.
    Senior AE; Robson B; Sherratt HS
    Biochem J; 1968 Dec; 110(3):511-9. PubMed ID: 5701681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chain-length specificity of inhibition of fatty acid oxidation by pent-4-enoly-L-carnitine and by pent-4-enoic acid.
    Holland PC; Sherratt HS
    Biochem J; 1970 Jun; 118(2):4P-5P. PubMed ID: 5484701
    [No Abstract]   [Full Text] [Related]  

  • 8. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
    Lopaschuk GD; Barr R; Thomas PD; Dyck JR
    Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Carbohydrate metabolism.
    Senior AE; Sherratt HS
    Biochem J; 1968 Dec; 110(3):521-7. PubMed ID: 5701682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel functions of acyl-CoA thioesterases and acyltransferases as auxiliary enzymes in peroxisomal lipid metabolism.
    Hunt MC; Alexson SE
    Prog Lipid Res; 2008 Nov; 47(6):405-21. PubMed ID: 18538142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The membrane systems of the mitochondrion. IV. The localization of the fatty acid oxidizing system.
    Allmann DW; Galzigna L; McCaman RE; Green DE
    Arch Biochem Biophys; 1966 Nov; 117(2):413-22. PubMed ID: 5972825
    [No Abstract]   [Full Text] [Related]  

  • 13. Sterol carrier protein X (SCPx) is a peroxisomal branched-chain beta-ketothiolase specifically reacting with 3-oxo-pristanoyl-CoA: a new, unique role for SCPx in branched-chain fatty acid metabolism in peroxisomes.
    Wanders RJ; Denis S; Wouters F; Wirtz KW; Seedorf U
    Biochem Biophys Res Commun; 1997 Jul; 236(3):565-9. PubMed ID: 9245689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Inhibitors of beta-oxidation of fatty acids (review)].
    Kendysh IN
    Vopr Med Khim; 1984; 30(2):18-27. PubMed ID: 6377685
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of 4-pentenoic acid on fatty acid oxidation.
    Brendel K; Corredor CF; Bressler R
    Biochem Biophys Res Commun; 1969 Feb; 34(3):340-7. PubMed ID: 5767029
    [No Abstract]   [Full Text] [Related]  

  • 16. Fatty acid oxidation in soluble systems of mammalian origin: the beginnings.
    Beinert H
    Prog Clin Biol Res; 1990; 321():1-22. PubMed ID: 2183228
    [No Abstract]   [Full Text] [Related]  

  • 17. Proceedings: Mechanism of microsomal chain elongation of fatty acids.
    Seubert W; Podack ER; Saathoff G
    Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1255-6. PubMed ID: 4461597
    [No Abstract]   [Full Text] [Related]  

  • 18. [Mutations enabling Escherichia coli to grow on medium chain fatty acids].
    Vanderwinkel E; De Vleghere M; Vande Meerssche J
    Eur J Biochem; 1971 Sep; 22(1):115-20. PubMed ID: 4938712
    [No Abstract]   [Full Text] [Related]  

  • 19. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis.
    Hoppel CL
    Fed Proc; 1982 Oct; 41(12):2853-7. PubMed ID: 7128831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the interthiol acyltransferase reaction catalyzed by the beta-ketoacyl synthase domain of the animal fatty acid synthase.
    Witkowski A; Joshi AK; Smith S
    Biochemistry; 1997 Dec; 36(51):16338-44. PubMed ID: 9405069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.