These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 5076392)

  • 1. On the existence in human auditory pathways of channels selectively tuned to the modulation present in frequency-modulated tones.
    Kay RH; Matthews DR
    J Physiol; 1972 Sep; 225(3):657-77. PubMed ID: 5076392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amplitude modulation reduces loudness adaptation to high-frequency tones.
    Wynne DP; George SE; Zeng FG
    J Acoust Soc Am; 2015 Jul; 138(1):279-83. PubMed ID: 26233027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state evoked responses to sinusoidally amplitude-modulated sounds recorded in man.
    Rees A; Green GG; Kay RH
    Hear Res; 1986; 23(2):123-33. PubMed ID: 3745015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of interaural delay in high-frequency sinusoidally amplitude-modulated tones, two-tone complexes, and bands of noise.
    Bernstein LR; Trahiotis C
    J Acoust Soc Am; 1994 Jun; 95(6):3561-7. PubMed ID: 8046145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state MEG responses elicited by a sequence of amplitude-modulated short tones of different carrier frequencies.
    Kuriki S; Kobayashi Y; Kobayashi T; Tanaka K; Uchikawa Y
    Hear Res; 2013 Feb; 296():25-35. PubMed ID: 23174483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory cortical response patterns to multiple rhythms of AM sound.
    Draganova R; Ross B; Borgmann C; Pantev C
    Ear Hear; 2002 Jun; 23(3):254-65. PubMed ID: 12072617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The envelope following response (EFR) in the Mongolian gerbil to sinusoidally amplitude-modulated signals in the presence of simultaneously gated pure tones.
    Dolphin WF; Mountain DC
    J Acoust Soc Am; 1993 Dec; 94(6):3215-26. PubMed ID: 8300956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Envelope coding in the lateral superior olive. II. Characteristic delays and comparison with responses in the medial superior olive.
    Joris PX
    J Neurophysiol; 1996 Oct; 76(4):2137-56. PubMed ID: 8899590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing of modulated sounds in the zebra finch auditory midbrain: responses to noise, frequency sweeps, and sinusoidal amplitude modulations.
    Woolley SM; Casseday JH
    J Neurophysiol; 2005 Aug; 94(2):1143-57. PubMed ID: 15817647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stream segregation in the perception of sinusoidally amplitude-modulated tones.
    Dolležal LV; Beutelmann R; Klump GM
    PLoS One; 2012; 7(9):e43615. PubMed ID: 22984436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency neurons in the inferior colliculus that are sensitive to interaural delays of amplitude-modulated tones: evidence for dual binaural influences.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1993 Jul; 70(1):64-80. PubMed ID: 8395589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Across-critical-band processing of amplitude-modulated tones.
    Yost WA; Sheft S
    J Acoust Soc Am; 1989 Feb; 85(2):848-57. PubMed ID: 2925999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delineation of FM rate channels in man by detectability of a three-component modulation waveform.
    Rees A; Kay RH
    Hear Res; 1985 Jun; 18(3):211-21. PubMed ID: 4044423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of auditory stimulus context on the representation of frequency in the gerbil inferior colliculus.
    Malone BJ; Semple MN
    J Neurophysiol; 2001 Sep; 86(3):1113-30. PubMed ID: 11535662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the stimuli to evoke the amplitude modulation following response (AMFR) in neonates.
    Riquelme R; Kuwada S; Filipovic B; Hartung K; Leonard G
    Ear Hear; 2006 Apr; 27(2):104-19. PubMed ID: 16518139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of tones and their modification by noise in nonhuman primates.
    Dylla M; Hrnicek A; Rice C; Ramachandran R
    J Assoc Res Otolaryngol; 2013 Aug; 14(4):547-60. PubMed ID: 23515749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Midbrain-Level Neural Correlates of Behavioral Tone-in-Noise Detection: Dependence on Energy and Envelope Cues.
    Wang Y; Abrams KS; Carney LH; Henry KS
    J Neurosci; 2021 Aug; 41(34):7206-7223. PubMed ID: 34266898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal coding of envelopes and their interaural delays in the inferior colliculus of the unanesthetized rabbit.
    Batra R; Kuwada S; Stanford TR
    J Neurophysiol; 1989 Feb; 61(2):257-68. PubMed ID: 2918354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human auditory steady-state responses during sweeps of intensity.
    Picton TW; van Roon P; John MS
    Ear Hear; 2007 Aug; 28(4):542-57. PubMed ID: 17609615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.