BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 5076771)

  • 1. The active center of aspartate transaminase. A fluorine-19 nuclear magnetic resonance study of the anion binding site.
    Cheng S; Martinez-Carrion M
    J Biol Chem; 1972 Oct; 247(20):6597-602. PubMed ID: 5076771
    [No Abstract]   [Full Text] [Related]  

  • 2. Nuclear magnetic resonance of aspartate transaminase. A 19 F and 1 H investigation of the binding of dicarboxylic acids to various forms of each isoenzyme.
    Martinez-Carrion M; Cheng S; Relimpio AM
    J Biol Chem; 1973 Mar; 248(6):2153-60. PubMed ID: 4690598
    [No Abstract]   [Full Text] [Related]  

  • 3. Aspartate aminotransferase: reaction of apoenzyme with 3-substituted coenzyme analogs.
    Mora S; Bocharov AL; Ivanov VI; Kapeiskii MY; Mamaeva OK; Stambolieva NA
    Mol Biol; 1972; 6(1):96-102. PubMed ID: 5086745
    [No Abstract]   [Full Text] [Related]  

  • 4. The structure and enzyme-coenzyme relationship of supernatant aspartate transaminase after dye sensitized photooxidation.
    Martinez-Carrion M; Kuczenski R; Tiemeier DC; Peterson DL
    J Biol Chem; 1970 Feb; 245(4):799-805. PubMed ID: 4984627
    [No Abstract]   [Full Text] [Related]  

  • 5. Stereospecificity of sodium borohydride reduction of Schiff bases at the active site of aspartate aminotransferase.
    Zito SW; Martinez-Carrion M
    J Biol Chem; 1980 Sep; 255(18):8645-9. PubMed ID: 7410385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective chemical modification and 19F NMR in the assignment of a pK value to the active site lysyl residue in aspartate transaminase.
    Slebe JC; Martinez-Carrion M
    J Biol Chem; 1978 Apr; 253(7):2093-7. PubMed ID: 24633
    [No Abstract]   [Full Text] [Related]  

  • 7. Fluorine-19 nuclear magnetic resonance studies of effects of ligands on trifluoroacetonylated supernatant aspartate transaminase.
    Critz WJ; Martinez-Carrion M
    Biochemistry; 1977 Apr; 16(8):1559-64. PubMed ID: 15584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspartate transcarbamylase from Escherichia coli. The use of pyridoxal 5'-phosphate as a probe in the active site.
    Greenwell P; Jewett SL; Stark GR
    J Biol Chem; 1973 Sep; 248(17):5994-6001. PubMed ID: 4580049
    [No Abstract]   [Full Text] [Related]  

  • 9. Reaction of pyridoxal 5'-sulfate with apoenzyme of aspartate aminotransferase. Covalent labeling of the protein with elimination of sulfate.
    Yang IY; Khomutov RM; Metzler DE
    Biochemistry; 1974 Sep; 13(19):3877-84. PubMed ID: 4472277
    [No Abstract]   [Full Text] [Related]  

  • 10. Fluorine-19 as a covalent active site-directed magnetic resonance probe in aspartate transaminase.
    Martinez-Carrion M; Slebe JC; Boettcher B; Relimpio AM
    J Biol Chem; 1976 Apr; 251(7):1853-8. PubMed ID: 5432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspartate aminotransferase: the interaction of 6-halo-substituted analogs of pyridoxal phosphate with the apoenzyme.
    Mora S; Nikolova ZV; Bocharov AL; Ivanov VI; Mamaeva OK; Stambolieva N; Florent'ev VL; Karpeiskii MYa
    Mol Biol; 1972; 6(4):449-54. PubMed ID: 4659309
    [No Abstract]   [Full Text] [Related]  

  • 12. 31P nuclear-magnetic-resonance studies of pyridoxal and pyridoxamine phosphates. Interaction with cytoplasmic aspartate transaminase.
    Martinez-Carrion M
    Eur J Biochem; 1975 May; 54(1):39-43. PubMed ID: 238848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of spin-labeled vitamin B6 analogues for the study of aspartate aminotransferase.
    Misharin AY; Polyanovsky OL; Timofeev VP
    FEBS Lett; 1974 Apr; 41(1):131-4. PubMed ID: 4368425
    [No Abstract]   [Full Text] [Related]  

  • 14. Mechanism of the irreversible inhibition of aspartate aminotransferase by the bacterial toxin L-2-amino-4-methoxy-trans-3-butenoic acid.
    Rando RR; Relyea N; Cheng L
    J Biol Chem; 1976 Jun; 251(11):3306-12. PubMed ID: 6451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Binding of pyridoxyl derivatives to apoaspartate transaminase from swine hearts].
    Orlacchio A; Borri-Voltattorni C; Salerno C; Turano C
    Boll Soc Ital Biol Sper; 1974 Dec; 50(23-24):2020-3. PubMed ID: 4464909
    [No Abstract]   [Full Text] [Related]  

  • 16. The apo-holo hybrid of cytosolic aspartate aminotransferase, preparation and studies on subunit interactions.
    Schlegel H; Christen P
    Biochem Biophys Res Commun; 1974 Nov; 61(1):117-23. PubMed ID: 4474881
    [No Abstract]   [Full Text] [Related]  

  • 17. Phosphorus-31 nuclear magnetic resonance of aspartate aminotransferase from chicken heart cytosol.
    Korpela T; Mattinen J; Himanen JP; Mekhanic ML; Torchinsky YM
    Biochim Biophys Acta; 1987 Sep; 915(2):299-304. PubMed ID: 3651477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction between pyridoxamine 5'-phosphate and apo-aspartate aminotransferase from pig heart. Evidence for a negative cooperativity.
    Arrio-Dupont M
    Eur J Biochem; 1972 Oct; 30(2):307-17. PubMed ID: 4676995
    [No Abstract]   [Full Text] [Related]  

  • 19. Schiff bases of pyridoxal phosphate with active center lysines of ribonuclease A.
    Raetz CR; Auld DS
    Biochemistry; 1972 Jun; 11(12):2229-36. PubMed ID: 5028492
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphopyridoxyl peptide from chicken heart aspartate aminotransferase.
    Torchinsky YM; Kochkina VM; Sajgó M
    Acta Biochim Biophys Acad Sci Hung; 1974; 9(3):213-6. PubMed ID: 4423394
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.