These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 5076771)

  • 41. Phosphorus-31 nuclear magnetic resonance study on cytoplasmic aspartate aminotransferase from pig heart. A reinvestigation.
    Schnackerz KD
    Biochim Biophys Acta; 1984 Sep; 789(2):241-4. PubMed ID: 6477931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and catalytic role of the functional groups of aspartate aminotransferase.
    Fasella P; Turano C
    Vitam Horm; 1970; 28():157-94. PubMed ID: 4946801
    [No Abstract]   [Full Text] [Related]  

  • 43. Experimental evidence for a hydrophobic active center of glutamic-aspartic transaminase. Specific interaction of holoenzyme and apoenzyme with two fluorescein derivatives.
    Dimitropoulos CG; Oikonomakos NG; Karni-Katsadima IA; Kalogerakos TG; Evangelopoulos AE
    Eur J Biochem; 1973 Oct; 38(3):537-52. PubMed ID: 4797900
    [No Abstract]   [Full Text] [Related]  

  • 44. Topology of binding sites for carbamyl phosphate in aspartate transcarbamylase from Escherichia coli. The use of pyridoxal phosphate as covalent probe.
    Suter P; Rosenbusch JP
    Eur J Biochem; 1975 May; 54(1):293-9. PubMed ID: 1097249
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 31P nuclear magnetic resonance of mitochondrial aspartate aminotransferase. The effects of solution pH and ligand binding.
    Mattingly ME; Mattingly JR; Martinez-Carrion M
    J Biol Chem; 1982 Aug; 257(15):8872-8. PubMed ID: 7096340
    [No Abstract]   [Full Text] [Related]  

  • 46. Phosphorus-31 nuclear magnetic resonance studies on four pyridoxal 5'-phosphate dependent enzymes.
    Schnackerz KD
    Prog Clin Biol Res; 1984; 144A():195-208. PubMed ID: 6728845
    [No Abstract]   [Full Text] [Related]  

  • 47. Delta-aminolevulinic acid synthase of rhodopseudomonas spheroides. Binding of pyridoxal phosphate to the enzyme.
    Nandi DL
    Arch Biochem Biophys; 1978 Jun; 188(2):266-71. PubMed ID: 307943
    [No Abstract]   [Full Text] [Related]  

  • 48. Paradoxical inhibition of phosphorylase by pyridoxal phosphate. I. Studies on the reaction of pyridoxal phosphate with a specific lysine residue of phosphorylase b.
    Avramovic-Zikic O; Madsen NB
    J Biol Chem; 1972 Nov; 247(21):6999-7004. PubMed ID: 5082136
    [No Abstract]   [Full Text] [Related]  

  • 49. NMR spectra of exchangeable protons of pyridoxal phosphate-dependent enzymes.
    Metzler CM; Metzler DE; Kintanar A; Scott RD; Marceau M
    Biochem Biophys Res Commun; 1991 Jul; 178(1):385-92. PubMed ID: 2069576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inorganic phosphate binding and electrostatic effects in the active center of aspartate aminotransferase apoenzyme.
    Martinez-Liarte JH; Iriarte A; Martinez-Carrion M
    Biochemistry; 1992 Mar; 31(10):2712-9. PubMed ID: 1547211
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conformational properties of the isoenzymes of aspartate transaminase and the enzyme-substrate complexes.
    Martinez-Carrion M; Tiemeier DC; Peterson DL
    Biochemistry; 1970 Jun; 9(13):2574-82. PubMed ID: 5450225
    [No Abstract]   [Full Text] [Related]  

  • 52. Porcine cytosolic aspartate aminotransferase reconstituted with [4'-13C]pyridoxal phosphate. pH- and ligand-induced changes of the coenzyme observed by 13C NMR spectroscopy.
    Higaki T; Tanase S; Nagashima F; Morino Y; Scott AI; Williams HJ; Stolowich NJ
    Biochemistry; 1991 Mar; 30(9):2519-26. PubMed ID: 2001379
    [TBL] [Abstract][Full Text] [Related]  

  • 53. pH studies toward the elucidation of the auxiliary catalyst for pig heart aspartate aminotransferase.
    Kiick DM; Cook PF
    Biochemistry; 1983 Jan; 22(2):375-82. PubMed ID: 6402008
    [No Abstract]   [Full Text] [Related]  

  • 54. Primary structure of pyridoxal phosphate binding site in the mitochondrial and extramitochondrial aspartate aminotransferases from pig heart muscle. Chymotryptic peptides.
    Morino Y; Watanabe T
    Biochemistry; 1969 Aug; 8(8):3412-7. PubMed ID: 5809231
    [No Abstract]   [Full Text] [Related]  

  • 55. NMR studies of 1H resonances in the 10-18-ppm range for cytosolic aspartate aminotransferase.
    Metzler DE; Metzler CM; Mollova ET; Scott RD; Tanase S; Kogo K; Higaki T; Morino Y
    J Biol Chem; 1994 Nov; 269(45):28017-26. PubMed ID: 7961736
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modification of fructose-1,6-diphosphatase with pyridoxal 5'-phosphate. Evidence for the participation of lysyl residues at the active site.
    Colombo G; Marcus F
    Biochemistry; 1974 Jul; 13(15):3085-91. PubMed ID: 4366468
    [No Abstract]   [Full Text] [Related]  

  • 57. Fast conformational changes at the active site of aspartic aminotransferase.
    Giannini I; Baroncelli V; Boccalon G
    FEBS Lett; 1975 Jul; 54(3):307-10. PubMed ID: 236929
    [No Abstract]   [Full Text] [Related]  

  • 58. Nuclear magnetic resonance studies of macromolecules with fluorine nuclei as probes.
    Dwek RA
    Ciba Found Symp; 1971; 2():239-79. PubMed ID: 5212153
    [No Abstract]   [Full Text] [Related]  

  • 59. Fluorinated amino acids and phosphopyridoxyl fluoramino acids as reversible active site directed inhibitors of aspartate transaminase-1.
    Relimpio A; Slebe JC; Martinez-Carrion M
    Biochem Biophys Res Commun; 1975 Apr; 63(3):625-34. PubMed ID: 236745
    [No Abstract]   [Full Text] [Related]  

  • 60. Glutamic-aspartic transaminase. XI. Reactivity toward thiosemicarbazide.
    Jenkins WT; D'Ari L
    Biochemistry; 1966 Sep; 5(9):2900-5. PubMed ID: 5961877
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.