These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 5077847)

  • 1. Evidence that superoxide dismutase plays a role in protecting red blood cells against peroxidative hemolysis.
    Fee JA; Teitelbaum HD
    Biochem Biophys Res Commun; 1972 Oct; 49(1):150-8. PubMed ID: 5077847
    [No Abstract]   [Full Text] [Related]  

  • 2. Observations on the mechanism of the oxygen/dialuric acid-induced hemolysis of vitamin e-deficient rat red blood cells and the protective roles of catalase and superoxide dismutase.
    Fee JA; Bergamini R; Briggs RG
    Arch Biochem Biophys; 1975 Jul; 169(1):160-7. PubMed ID: 168815
    [No Abstract]   [Full Text] [Related]  

  • 3. Hemolysis of human erythrocytes by paraquat in relation to superoxide dismutase activity.
    Kobayashi Y; Okahata S; Usui T
    Biochem Biophys Res Commun; 1979 Dec; 91(4):1288-94. PubMed ID: 230840
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of oxidative hemolysis and lipid peroxidation by mepacrine.
    Nagai J; Tanaka M; Hibasami H; Ikeda T
    J Biochem; 1981 Apr; 89(4):1143-8. PubMed ID: 7251575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of superoxide and hydroperoxide in the reductive activation of tryptophan-2,3-dioxygenase.
    Brady FO; Forman HJ; Feigelson P
    J Biol Chem; 1971 Dec; 246(23):7119-24. PubMed ID: 5167018
    [No Abstract]   [Full Text] [Related]  

  • 6. Evidence that superoxide radicals are involved in the hemolytic mechanism of phenylhydrazine.
    Valenzuela A; Ríos H; Neiman G
    Experientia; 1977 Jul; 33(7):962-3. PubMed ID: 196888
    [No Abstract]   [Full Text] [Related]  

  • 7. Relative activity of alpha-tocopherol and gamma-tocopherol in preventing oxidative red cell hemolysis.
    Bieri JG; Evarts RP; Gart JJ
    J Nutr; 1976 Jan; 106(1):124-7. PubMed ID: 1245886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging human erythrocytes. Differential sensitivity of young and old erythrocytes to hemolysis induced by peroxide in the presence of thyroxine.
    Walls R; Kumar KS; Hochstein P
    Arch Biochem Biophys; 1976 Jun; 174(2):463-8. PubMed ID: 1230004
    [No Abstract]   [Full Text] [Related]  

  • 9. Relative importance of cellular uptake and reactive oxygen species for the toxicity of alloxan and dialuric acid to insulin-producing cells.
    Elsner M; Gurgul-Convey E; Lenzen S
    Free Radic Biol Med; 2006 Sep; 41(5):825-34. PubMed ID: 16895803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amelioration of glucose induced hemolysis of human erythrocytes by vitamin E.
    Marar T
    Chem Biol Interact; 2011 Sep; 193(2):149-53. PubMed ID: 21736874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes.
    Bukowska B; Kowalska S
    Toxicol Lett; 2004 Aug; 152(1):73-84. PubMed ID: 15294349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The antioxidant effect of hydroxyl-substituent Schiff bases on the free-radical-induced hemolysis of human erythrocytes.
    Tang YZ; Liu ZQ
    Cell Biochem Funct; 2007; 25(2):149-58. PubMed ID: 16170851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of alpha-tocopherol on lipid peroxide production and hemolysis following mechanical trauma to blood.
    Reitman LW; Char DH; Bernstein EF
    J Surg Res; 1970 Oct; 10(10):471-6. PubMed ID: 5476458
    [No Abstract]   [Full Text] [Related]  

  • 14. The hemolytic activity of citral: evidence for free radical participation.
    Tamir I; Abramovici A; Milo-Goldzweig I; Segal R
    Biochem Pharmacol; 1984 Oct; 33(19):2945-50. PubMed ID: 6487347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide anion and drug-induced hemolysis.
    Goldberg B; Stern A
    Acta Biol Med Ger; 1977; 36(5-6):731-4. PubMed ID: 203153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence between the free-radical peroxidation, the activity of the superoxide dismutase glucose-6-phosphate dehydrogenase and erythrocytes haemolysis after thermal trauma and alpha-tocopherol treatment.
    Bekyarova G; Kozarev I; Yankova T
    Acta Physiol Pharmacol Bulg; 1989; 15(2):68-73. PubMed ID: 2801150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis of human erythrocytes by lipid peroxides and fatty acids.
    Căpâlnă S
    Rev Roum Physiol; 1970; 7(1):49-52. PubMed ID: 5512143
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduced triphosphopyridine nucleotide oxidase-catalyzed alterations of membrane phospholipids. V. Use of erythrocytes to demonstrate enzyme-dependent production of a component with the properties of a free radical.
    Pfeifer PM; McCay PB
    J Biol Chem; 1971 Nov; 246(21):6401-8. PubMed ID: 4399880
    [No Abstract]   [Full Text] [Related]  

  • 19. Hemolysis of chicken erythrocytes by t-butyl hydroperoxide and protection by plasma.
    Smith RC; Gore JZ; Roland D
    Poult Sci; 1988 Nov; 67(11):1632-5. PubMed ID: 3237581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of oxygen radicals scavenging enzymes in the protoporphyrin induced photohemolysis.
    Finazzi-Agrò A; Floris G; Fadda MB; Crifò C
    Experientia; 1979 Nov; 35(11):1445-7. PubMed ID: 510472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.