These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 5079062)

  • 1. A 3,5-diaminohexanoate-decomposing Brevibacterium.
    Hong SL; Barker HA
    J Bacteriol; 1972 Oct; 112(1):231-4. PubMed ID: 5079062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymes involved in 3,5-diaminohexanoate degradation by Brevibacterium sp.
    Barker HA; Kahn JM; Chew S
    J Bacteriol; 1980 Sep; 143(3):1165-70. PubMed ID: 7410315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of cyclohexylamine by Brevibacterium oxydans IH-35A.
    Iwaki H; Shimizu M; Tokuyama T; Hasegawa Y
    Appl Environ Microbiol; 1999 May; 65(5):2232-4. PubMed ID: 10224025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. cis-terpin hydrate metabolism by a Brevibacterium: patterns of enzyme induction, and accumulation of -terpineol in growth.
    Baum RH; Marr EK
    J Bacteriol; 1972 Apr; 110(1):229-35. PubMed ID: 4336108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The action of siderochromes on the glutamic acid-forming bacterium Brevibacterium flavum ATCC 14067].
    Nüesch J; Knüsel F; Scherrer M
    Pathol Microbiol (Basel); 1967; 30(6):890-9. PubMed ID: 5591327
    [No Abstract]   [Full Text] [Related]  

  • 6. Aerobic metabolism of 3,5-diaminohexanoate in a Brevibacterium. Purification of 3,5-diaminohexanoate dehydrogenase and degradation of 3-keto-5-aminohexanoate.
    Hong SL; Barker HA
    J Biol Chem; 1973 Jan; 248(1):41-9. PubMed ID: 4692842
    [No Abstract]   [Full Text] [Related]  

  • 7. [Decomposition of uric acid by aerobic bacteria isolated from soil].
    Imsĕnecki AA; Popova LS
    Mikrobiologiia; 1971; 40(2):269-74. PubMed ID: 5560554
    [No Abstract]   [Full Text] [Related]  

  • 8. [Effect of the stereoisomers of glutamic acid on the vital activity of auxotrophic mutant producers of lysine].
    Marshavina ZV; Makarova EN; Mkhitarian AR; Nikogoscova NR
    Prikl Biokhim Mikrobiol; 1975; 11(5):669-72. PubMed ID: 1187569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial metabolism of phenolic amines: degradation of dl-synephrine by an unidentified arthrobacter.
    Devi NA; Kutty RK; Vasantharajan VN; Subba RAO PV
    J Bacteriol; 1975 Jun; 122(3):866-73. PubMed ID: 1150621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-Threonine catabolism via aminoacetone: a search for a pathway in bacteria.
    Bell SC; Turner JM
    Biochem Soc Trans; 1976; 4(3):497-500. PubMed ID: 187477
    [No Abstract]   [Full Text] [Related]  

  • 11. Industrial importance of the genus Brevibacterium.
    Onraedt A; Soetaert W; Vandamme E
    Biotechnol Lett; 2005 Apr; 27(8):527-33. PubMed ID: 15973485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brevibacterium daeguense sp. nov., a nitrate-reducing bacterium isolated from a 4-chlorophenol enrichment culture.
    Cui Y; Kang MS; Woo SG; Jin L; Kim KK; Park J; Lee M; Lee ST
    Int J Syst Evol Microbiol; 2013 Jan; 63(Pt 1):152-157. PubMed ID: 22368170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol.
    Verma T; Singh N
    J Basic Microbiol; 2013 Mar; 53(3):277-90. PubMed ID: 22733606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between aeration and physiological activity of the producer of extracellular L-lysine.
    Beker M; Mezhina G; Ruklisha M; Viestur U; Selga S; Alexandrova M; Apsite A; Savenkov V
    Biotechnol Bioeng Symp; 1973; 0(4-1):233-9. PubMed ID: 4802438
    [No Abstract]   [Full Text] [Related]  

  • 15. [Biodegradation of polycyclic aromatic hydrocarbons by a preponderant brevibacterium].
    Nie M; Zhang Z; Lei P
    Huan Jing Ke Xue; 2001 Nov; 22(6):83-5. PubMed ID: 11855189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brevibacterium anseongense sp. nov., isolated from soil of ginseng field.
    Jung MS; Quan XT; Siddiqi MZ; Liu Q; Kim SY; Wee JH; Im WT
    J Microbiol; 2018 Oct; 56(10):706-712. PubMed ID: 30136258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Microbial synthesis of deuterium labelled L-phenylalanine with different levels of isotopic enrichment by facultative methylotrophic bacterium Brevibacterium methylicum with RMP assimilation of carbon].
    Mosin OV; Shvets VI; Skladnev DA; Ignatov I
    Biomed Khim; 2014; 60(4):448-61. PubMed ID: 25249528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic nitrogen assimilation in yeasts: alteration in enzyme activities associated with changes in cultural conditions and growth phase.
    Thomulka KW; Moat AG
    J Bacteriol; 1972 Jan; 109(1):25-33. PubMed ID: 4400414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brevibacterium metallicus sp. nov., an endophytic bacterium isolated from roots of Prosopis laegivata grown at the edge of a mine tailing in Mexico.
    Román-Ponce B; Li YH; Vásquez-Murrieta MS; Sui XH; Chen WF; Estrada-de Los Santos P; Wang ET
    Arch Microbiol; 2015 Dec; 197(10):1151-8. PubMed ID: 26429721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brevibacterium frigoritolerans as a Novel Organism for the Bioremediation of Phorate.
    Jariyal M; Gupta VK; Mandal K; Jindal V
    Bull Environ Contam Toxicol; 2015 Nov; 95(5):680-6. PubMed ID: 26205232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.