BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 5079068)

  • 1. Oxidation of nicotinic acid by a Bacillus species: regulation of nicotinic acid and 6-hydroxynicotinic acid hydroxylases.
    Hirschberg R; Ensign JC
    J Bacteriol; 1972 Oct; 112(1):392-7. PubMed ID: 5079068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of nicotinic acid by a Bacillus species: purification and properties of nicotinic acid and 6-hydroxynicotinic acid hydroxylases.
    Hirschberg R; Ensign JC
    J Bacteriol; 1971 Nov; 108(2):751-6. PubMed ID: 5128334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of nicotinic acid by a Bacillus species: source of oxygen atoms for the hydroxylation of nicotinic acid and 6-hydroxynicotinic acid.
    Hirschberg R; Ensign JC
    J Bacteriol; 1971 Nov; 108(2):757-9. PubMed ID: 5128335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilization of -methyl-D-mannoside by Bacillus popilliae.
    Bhumiratana A; Costilow RN
    Can J Microbiol; 1973 Feb; 19(2):169-76. PubMed ID: 4696778
    [No Abstract]   [Full Text] [Related]  

  • 5. Purification, properties, and regulation of glutamic dehydrogenase of Bacillus licheniformis.
    Phibbs PV; Bernlohr RW
    J Bacteriol; 1971 May; 106(2):375-85. PubMed ID: 4396790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of 2-methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase with N-methyl-5-hydroxynicotinic acid: studies on the mode of binding, and protonation status of the substrate.
    Chaiyen P; Brissette P; Ballou DP; Massey V
    Biochemistry; 1997 Nov; 36(45):13856-64. PubMed ID: 9374863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Combination of growing culture transformation and resting cells transformation of Pseudomonas putida NA-1 for production of 6-hydroxynicotinic acid].
    Xu L; Yuan S; Chen T; Dai YJ
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):63-7. PubMed ID: 16579467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of linuron and some other herbicides and fungicides by a linuron-inducible enzyme obtained from Bacillus sphaericus.
    Engelhardt G; Wallnöfer PR; Plapp R
    Appl Microbiol; 1971 Sep; 22(3):284-8. PubMed ID: 5119200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual mechanism of oxygen atom transfer and product rearrangement in the catalytic reaction of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Chaiyen P; Brissette P; Ballou DP; Massey V
    Biochemistry; 1997 Jul; 36(26):8060-70. PubMed ID: 9201954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of new 6-methylnicotinic-acid-degrading bacteria, one of which catalyses the regioselective hydroxylation of nicotinic acid at position C2.
    Tinschert A; Kiener A; Heinzmann K; Tschech A
    Arch Microbiol; 1997 Nov; 168(5):355-61. PubMed ID: 9325423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteriology of manganese nodules. IV. Induction of an MnO2-reductase system in a marine bacillus.
    Trimble RB; Ehrlich HL
    Appl Microbiol; 1970 Jun; 19(6):966-72. PubMed ID: 5456014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylation of 14-C-niflumic acid by phenobarbital-induced rat liver microsomes.
    Lan SJ; Chando TJ; Schreiber EC
    Drug Metab Dispos; 1975; 3(2):96-103. PubMed ID: 236165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiology of sporeforming bacteria associated with insects. IV. Glucose catabolism in Bacillus larvae.
    Julian GS; Bulla LA
    J Bacteriol; 1971 Nov; 108(2):828-34. PubMed ID: 4331499
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural effects on Arthrobacter methylene hydroxylase activity.
    Hayasaka S; Klein DA
    J Bacteriol; 1971 Dec; 108(3):1141-6. PubMed ID: 5139534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THE PATHWAY OF NICOTINIC ACID OXIDATION BY A BACILLUS SPECIES.
    ENSIGN JC; RITTENBERG SC
    J Biol Chem; 1964 Jul; 239():2285-91. PubMed ID: 14216418
    [No Abstract]   [Full Text] [Related]  

  • 17. Product induction of purine hydroxylase II in Asperigillus nidulans.
    Sealy-Lewis HM; Lycan D; Scazzocchio C
    Mol Gen Genet; 1979 Jul; 174(1):105-6. PubMed ID: 384157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology of sporeforming bacteria associated with insects. 3. Radiorespirometry of pyruvate, acetate, succinate, and glutamate oxidation.
    Bulla LA; St Julian G; Rhodes RA
    Can J Microbiol; 1971 Aug; 17(8):1073-9. PubMed ID: 4938112
    [No Abstract]   [Full Text] [Related]  

  • 19. Physiological studies of an oligosporogenous strain of Bacillus popilliae.
    Costilow RN; Coulter WH
    Appl Microbiol; 1971 Dec; 22(6):1076-84. PubMed ID: 4944806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of acetate by various strains of Bacillus popilliae.
    McKay LL; Bhumiratana A; Costilow RN
    Appl Microbiol; 1971 Dec; 22(6):1070-5. PubMed ID: 5137580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.