These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5079887)

  • 1. Effect of internal rotation on nuclear magnetic relaxation times for macromolecules.
    Marshall AG; Schmidt PG; Sykes BD
    Biochemistry; 1972 Oct; 11(21):3875-9. PubMed ID: 5079887
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of succinate to aspartate trancarbamylase catalytic subunit. pH and temperature dependence of nuclear magnetic resonance relaxation times.
    Beard CB; Schmidt PG
    Biochemistry; 1973 Jun; 12(12):2255-64. PubMed ID: 4575788
    [No Abstract]   [Full Text] [Related]  

  • 3. Nuclear magnetic resonance studies of the dynamic aspects of molecular structure and interaction in biological systems.
    Sykes BD; Scott MD
    Annu Rev Biophys Bioeng; 1972; 1():27-50. PubMed ID: 4347273
    [No Abstract]   [Full Text] [Related]  

  • 4. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with an adenosine 5'-triphosphate analog.
    Wu CW; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1400-8. PubMed ID: 4572360
    [No Abstract]   [Full Text] [Related]  

  • 5. A nuclear magnetic resonance study of the interaction of inhibitory nucleosides with Escherichia coli aspartate transcarbamylase and its regulatory subunit.
    London RE; Schmidt PG
    Biochemistry; 1974 Mar; 13(6):1170-9. PubMed ID: 4592470
    [No Abstract]   [Full Text] [Related]  

  • 6. A difference sedimentation equilibrium technique for measuring small changes in molecular weight. II. Experimental.
    Springer MS; Schachman HK
    Biochemistry; 1974 Aug; 13(18):3726-33. PubMed ID: 4850197
    [No Abstract]   [Full Text] [Related]  

  • 7. Applications of nuclear magnetic resonance spectroscopy to the study of macromolecules.
    Jardetzky O; Wade-Jardetzky NG
    Annu Rev Biochem; 1971; 40():605-34. PubMed ID: 4330581
    [No Abstract]   [Full Text] [Related]  

  • 8. A 81Br nuclear magnetic resonance study of bromide ion binding to proteins in aqueous solution.
    Zeppezauer M; Lindman B; Forsén S; Lindqvist I
    Biochem Biophys Res Commun; 1969 Sep; 37(1):137-42. PubMed ID: 4242157
    [No Abstract]   [Full Text] [Related]  

  • 9. Solid-state NMR spectroscopy of the quadrupolar halogens: chlorine-35/37, bromine-79/81, and iodine-127.
    Bryce DL; Sward GD
    Magn Reson Chem; 2006 Apr; 44(4):409-50. PubMed ID: 16425199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetic resonance study of ligand binding to Mn-aspartate transcarbamylase.
    Fan S; Harrison LW; Hammes GG
    Biochemistry; 1975 May; 14(10):2219-24. PubMed ID: 807235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear magnetic resonance studies of the interaction of water with the polar region of phosphatidylcholine micelles in benzene.
    Walter WV; Hayes RG
    Biochim Biophys Acta; 1971 Dec; 249(2):528-38. PubMed ID: 5134195
    [No Abstract]   [Full Text] [Related]  

  • 12. Relaxation spectra of aspartate transcarbamylase. Interaction of the native enzyme with cytidine 5'-triphosphate.
    Harrison LW; Hammes GG
    Biochemistry; 1973 Mar; 12(7):1395-400. PubMed ID: 4572359
    [No Abstract]   [Full Text] [Related]  

  • 13. A novel approach to the study of mammalian cell-membranes using deuterium NMR.
    Arvidson G; Lindblom G; Drakenberg T
    FEBS Lett; 1975 Jun; 54(2):249-52. PubMed ID: 1132512
    [No Abstract]   [Full Text] [Related]  

  • 14. High resolution proton relaxation studies of lecithins.
    Lee AG; Birdsall NJ; Levine YK; Metcalfe JC
    Biochim Biophys Acta; 1972 Jan; 255(1):43-56. PubMed ID: 4334686
    [No Abstract]   [Full Text] [Related]  

  • 15. Molecular aspects of hydrogen-deuterium exchange in macromolecules.
    Klotz IM
    J Colloid Interface Sci; 1968 Aug; 27(4):804-17. PubMed ID: 5677302
    [No Abstract]   [Full Text] [Related]  

  • 16. Nuclear magnetic resonance studies of amino acids and proteins. Rotational correlation times of proteins by deuterium nuclear magnetic resonance spectroscopy.
    Schramm S; Oldfield E
    Biochemistry; 1983 Jun; 22(12):2908-13. PubMed ID: 6871171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid sequence of the catalytic subunit of aspartate transcarbamoylase from Escherichia coli.
    Konigsberg WH; Henderson L
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2467-71. PubMed ID: 6341995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the relaxation parameters of a 13C-enriched methylene carbon and a 13C-enriched perdeuteromethylene carbon attached to chymotrypsin.
    Malthouse JP; Finucane MD
    Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):649-57. PubMed ID: 1764028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic relaxation analysis of dynamic processes in macromolecules in the pico- to microsecond range.
    King R; Maas R; Gassner M; Nanda RK; Conover WW
    Biophys J; 1978 Oct; 24(1):103-17. PubMed ID: 708816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional nuclear Overhauser effect: complete relaxation matrix analysis.
    Borgias BA; James TL
    Methods Enzymol; 1989; 176():169-83. PubMed ID: 2811685
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.