These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 5080320)

  • 1. Glyceraldehyde-3-phosphate dehydrogenase activity in developing brain during experimental cretinism.
    Schwark WS; Singhal RL; Ling GM
    Biochim Biophys Acta; 1972 Jul; 273(2):308-17. PubMed ID: 5080320
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolic control mechanisms in mammalian systems. XVII. Thyroid hormone control of brain hexose monophosphate shunt enzymes during experimental cretinism.
    Schwark WS; Singhal RL; Ling GM
    Brain Res; 1972 Jul; 42(1):103-16. PubMed ID: 5047178
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolic control mechanisms in mammalian systems. Regulation of key glycolytic enzymes in developing brain during experimental cretinism.
    Schwark WS; Singhal RL; Ling GM
    J Neurochem; 1972 Apr; 19(4):1171-82. PubMed ID: 4259764
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolic control mechanisms in mammalian systems. 8. Thyroid hormone control of alpha-glycerophosphate dehydrogenase activity in rat cerebral cortex and cerebellum.
    Schwark WS; Singhal RL; Ling GM
    Can J Physiol Pharmacol; 1971 Jun; 49(6):598-607. PubMed ID: 5088464
    [No Abstract]   [Full Text] [Related]  

  • 5. Thyroid hormone control of serotonin in developing rat brain.
    Schwark WS; Keesey RR
    Res Commun Chem Pathol Pharmacol; 1975 Jan; 10(1):37-50. PubMed ID: 1124320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical effects of thyroid hormones in the developing brain.
    Balãzs R
    UCLA Forum Med Sci; 1971; 14():273-320. PubMed ID: 4945482
    [No Abstract]   [Full Text] [Related]  

  • 7. Inhibition of thyroid hormone induction of mitochondrial alpha-glycerophosphate dehydrogenase in riboflavin deficiency.
    Wolf G; Rlin RS
    Endocrinology; 1970 Jun; 86(6):1347-53. PubMed ID: 5441871
    [No Abstract]   [Full Text] [Related]  

  • 8. S-100 protein accumulation in developing animals and cell cultures.
    Herschman HR
    UCLA Forum Med Sci; 1971; 14():491-8. PubMed ID: 4942382
    [No Abstract]   [Full Text] [Related]  

  • 9. [Penetration of radioactive isotopes into regions of the brain during experimental convulsions].
    Maĭzelis MIa
    Zh Nevropatol Psikhiatr Im S S Korsakova; 1971; 71(9):1355-8. PubMed ID: 5148193
    [No Abstract]   [Full Text] [Related]  

  • 10. Distribution of ( 14 C) amphetamine in mouse brain: an autoradiographic study.
    Placidi GF; Masuoka DT; Earle RW
    Brain Res; 1972 Mar; 38(2):399-405. PubMed ID: 5028535
    [No Abstract]   [Full Text] [Related]  

  • 11. Prenatal human brain development. II. Studies on malate dehydrogenase.
    Chabás A; Briones P; Sabater J
    Dev Neurosci; 1980; 3(1):19-27. PubMed ID: 7408707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of injected 131-I-labelled thyroxine, triiodothyronine and iodide by rat brain during various stages of development.
    Peterson NA; Nataf BM; Chaikoff IL; Ragupathy E
    J Neurochem; 1966 Oct; 13(10):933-43. PubMed ID: 5927763
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia.
    Browne SE; Bowling AC; MacGarvey U; Baik MJ; Berger SC; Muqit MM; Bird ED; Beal MF
    Ann Neurol; 1997 May; 41(5):646-53. PubMed ID: 9153527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 6-Hydroxydopamine during development: relation between opposite regional changes in brain noradrenaline.
    Zieher LM; Jaim-Etcheverry G
    Eur J Pharmacol; 1979 Oct; 58(3):217-23. PubMed ID: 510355
    [No Abstract]   [Full Text] [Related]  

  • 15. [Triiodothyronine-stimulated enhancement of activity of some enzymes of glycogen metabolism and glycolysis in the skeletal muscle of hypothyroid rats and effect of actinomycin D].
    Pitra C; Krause EG; Wollenberger A
    Endokrinologie; 1969; 54(3):225-37. PubMed ID: 5358228
    [No Abstract]   [Full Text] [Related]  

  • 16. Triiodothyronine-induced increase in the enzymes of the glycogen cycle and the triosephosphate-phosphoglycerate section of glycolysis in striated muscle of the hypothyroid rat.
    Krause EG; Pitra C; Wollenberger A
    Biochim Biophys Acta; 1967 Nov; 148(2):593-5. PubMed ID: 6075433
    [No Abstract]   [Full Text] [Related]  

  • 17. The development of the blood-brain barrier.
    Dobbing J
    Prog Brain Res; 1968; 29():417-27. PubMed ID: 4898075
    [No Abstract]   [Full Text] [Related]  

  • 18. The effect of age on the uptake and degradation of thyroid hormone by the brain and skeletal muscle.
    Cohan S; Ford D; Rhines R
    Acta Neurol Scand; 1967; 43(1):11-32. PubMed ID: 6040322
    [No Abstract]   [Full Text] [Related]  

  • 19. Production rates and turnover of triiodothyronine in rat-developing cerebral cortex and cerebellum. Responses to hypothyroidism.
    Silva JE; Matthews PS
    J Clin Invest; 1984 Sep; 74(3):1035-49. PubMed ID: 6470136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of malnutrition on regional growth of the developing rat brain.
    Fish I; Winick M
    Exp Neurol; 1969 Dec; 25(4):534-40. PubMed ID: 5362568
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.