These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 508068)

  • 41. Vertebroplasty with high-viscosity polymethylmethacrylate cement facilitates vertebral body restoration in vitro.
    Rüger M; Schmoelz W
    Spine (Phila Pa 1976); 2009 Nov; 34(24):2619-25. PubMed ID: 19881400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methyl methacrylate concentrations in tissues adjacent to bone cement.
    Petty W
    J Biomed Mater Res; 1980 Jul; 14(4):427-34. PubMed ID: 7400196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo response to a low-modulus PMMA bone cement in an ovine model.
    Robo C; Hulsart-Billström G; Nilsson M; Persson C
    Acta Biomater; 2018 May; 72():362-370. PubMed ID: 29559365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Healing potentials of polymethylmethacrylate bone cement combined with platelet gel in the critical-sized radial bone defect of rats.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    PLoS One; 2018; 13(4):e0194751. PubMed ID: 29608574
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of failure characteristics of a range of cancellous bone-bone cement composites.
    Lucksanasombool P; Higgs WA; Ignat M; Higgs RJ; Swain MV
    J Biomed Mater Res A; 2003 Jan; 64(1):93-104. PubMed ID: 12483701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.
    Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H
    J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer.
    Kawashita M; Kawamura K; Li Z
    Acta Biomater; 2010 Aug; 6(8):3187-92. PubMed ID: 20197125
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements.
    Pahlevanzadeh F; Bakhsheshi-Rad HR; Hamzah E
    J Mech Behav Biomed Mater; 2018 Jun; 82():257-267. PubMed ID: 29627737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine: percutaneous vertebroplasty versus kyphoplasty.
    Togawa D; Kovacic JJ; Bauer TW; Reinhardt MK; Brodke DS; Lieberman IH
    Spine (Phila Pa 1976); 2006 Jan; 31(1):E4-10. PubMed ID: 16395165
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of BaSO4 on the fatigue crack propagation rate of PMMA bone cement.
    Molino LN; Topoleski LD
    J Biomed Mater Res; 1996 May; 31(1):131-7. PubMed ID: 8731157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preparation and release characteristics of tobramycin-impregnated polymethylmethacrylate beads.
    Goodell JA; Flick AB; Hebert JC; Howe JG
    Am J Hosp Pharm; 1986 Jun; 43(6):1454-61. PubMed ID: 3728480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of the in vitro cell-material interactions and in vivo osteo-integration of a spinal acrylic bone cement.
    Verrier S; Hughes L; Alves A; Peroglio M; Alini M; Boger A
    Eur Spine J; 2012 Aug; 21 Suppl 6(Suppl 6):S800-9. PubMed ID: 21811821
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity.
    Li T; Weng X; Bian Y; Zhou L; Cui F; Qiu Z
    PLoS One; 2015; 10(6):e0129018. PubMed ID: 26039750
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of powder components of commercial bone cements.
    Imai Y; Ohyama A
    Dent Mater J; 2001 Dec; 20(4):345-52. PubMed ID: 11915628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass.
    Cui X; Huang C; Zhang M; Ruan C; Peng S; Li L; Liu W; Wang T; Li B; Huang W; Rahaman MN; Lu WW; Pan H
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28615491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Bone cements based on polymethylmethacrylate].
    Breusch SJ; Kühn KD
    Orthopade; 2003 Jan; 32(1):41-50. PubMed ID: 12557085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro elution characteristics of commercially and noncommercially prepared antibiotic PMMA beads.
    Nelson CL; Griffin FM; Harrison BH; Cooper RE
    Clin Orthop Relat Res; 1992 Nov; (284):303-9. PubMed ID: 1395310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of augmentation with resorbable or conventional bone cement on the holding strength for femoral neck fracture devices.
    Eriksson F; Mattsson P; Larsson S
    J Orthop Trauma; 2002 May; 16(5):302-10. PubMed ID: 11972072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis.
    Moore DC; Frankenburg EP; Goulet JA; Goldstein SA
    J Orthop Trauma; 1997 Nov; 11(8):577-83. PubMed ID: 9415864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.