These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 5081102)

  • 1. Synthesis of glucose 1-phosphate-U- 14 C and specifically labeled sucroses using sucrose phosphorylase.
    Chassy BM; Krichevsky MI
    Anal Biochem; 1972 Sep; 49(1):232-9. PubMed ID: 5081102
    [No Abstract]   [Full Text] [Related]  

  • 2. Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of alpha-D-glucose 1-phosphate.
    Goedl C; Schwarz A; Minani A; Nidetzky B
    J Biotechnol; 2007 Mar; 129(1):77-86. PubMed ID: 17215056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of asymmetrically labeled sucrose by a recombinant sucrose synthase.
    Nakai T; Tonouchi N; Tsuchida T; Mori H; Sakai F; Hayashi T
    Biosci Biotechnol Biochem; 1997 Nov; 61(11):1955-6. PubMed ID: 9404082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-step enzymatic assay for sucrose with sucrose phosphorylase.
    Birnberg PR; Brenner ML
    Anal Biochem; 1984 Nov; 142(2):556-61. PubMed ID: 6241435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and application of a rare disaccharide using sucrose phosphorylase from Leuconostoc mesenteroides.
    Morimoto K; Yoshihara A; Furumoto T; Takata G
    J Biosci Bioeng; 2015 Jun; 119(6):652-6. PubMed ID: 25499751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maltodextrin phosphorylase from Escherichia coli: production and application for the synthesis of alpha-glucose-1-phosphate.
    Nidetzky B; Weinhäusel A; Haltrich D; Kulbe KD; Schinzel R
    Ann N Y Acad Sci; 1996 May; 782():208-18. PubMed ID: 8659898
    [No Abstract]   [Full Text] [Related]  

  • 7. Sucrose phosphorylase of the rumen bacterium Pseudobutyrivibrio ruminis strain A.
    Kasperowicz A; Stan-Glasek K; Guczynska W; Piknova M; Pristas P; Nigutova K; Javorsky P; Michalowski T
    J Appl Microbiol; 2009 Sep; 107(3):812-20. PubMed ID: 19320946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of transport of glucose, fructose, and mannitol by Pseudomonas aeruginosa.
    Eagon RG; Phibbs PV
    Can J Biochem; 1971 Sep; 49(9):1031-41. PubMed ID: 5003580
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphorolytic cleavage of sucrose by sucrose-grown ruminal bacterium Pseudobutyrivibrio ruminis strain k3.
    Stan-Glasek K; Kasperowicz A; Guczyńska W; Piknová M; Pristas P; Nigutová K; Javorský P; Michałowski T
    Folia Microbiol (Praha); 2010 Jul; 55(4):383-5. PubMed ID: 20680577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase.
    Mueller M; Nidetzky B
    FEBS Lett; 2007 Aug; 581(20):3814-8. PubMed ID: 17659283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS.
    Perez Locas C; Yaylayan VA
    J Agric Food Chem; 2008 Aug; 56(15):6717-23. PubMed ID: 18611024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dextransucrase mutants of Leuconostoc mesenteroides BI-08 strain.
    Iliev I; Filibeva G; Ivanova I
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):305-8. PubMed ID: 15296183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of the efficacies of nine assay methods for the dextransucrase synthesis of dextran.
    Vettori MH; Mukerjea R; Robyt JF
    Carbohydr Res; 2011 Jul; 346(9):1077-82. PubMed ID: 21529789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellobiose phosphorylase in Fomes annosus.
    Hüttermann A; Volger C
    Nat New Biol; 1973 Sep; 245(141):64. PubMed ID: 4517050
    [No Abstract]   [Full Text] [Related]  

  • 15. Pseudo-priming of Escherichia coli maltodextrin phosphorylase by 6 3 - -D-glucopyranosyl maltotriose.
    Giri NY; French D
    Arch Biochem Biophys; 1971 Aug; 145(2):505-10. PubMed ID: 4942107
    [No Abstract]   [Full Text] [Related]  

  • 16. SUCROSE-URIDINE DIPHOSPHATE GLUCOSYLTRANSFERASE FROM JERUSALEM ARTICHOKE TUBERS.
    AVIGAD G
    J Biol Chem; 1964 Nov; 239():3613-8. PubMed ID: 14257584
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of -D-glucose 1,6-diphosphate in potentially prebiotic conditions.
    Degani C; Halmann M
    Nat New Biol; 1972 Feb; 235(58):171-3. PubMed ID: 4501201
    [No Abstract]   [Full Text] [Related]  

  • 18. Cloning and expression of the sucrose phosphorylase gene from Leuconostoc mesenteroides in Escherichia coli.
    Lee JH; Moon YH; Kim N; Kim YM; Kang HK; Jung JY; Abada E; Kang SS; Kim D
    Biotechnol Lett; 2008 Apr; 30(4):749-54. PubMed ID: 18038113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and some properties of sucrose phosphorylase from Leuconostoc mesenteroides.
    Koga T; Nakamura K; Shirokane Y; Mizusawa K; Kitao S; Kikuchi M
    Agric Biol Chem; 1991 Jul; 55(7):1805-10. PubMed ID: 1368718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate.
    Schwarz A; Nidetzky B
    FEBS Lett; 2006 Jul; 580(16):3905-10. PubMed ID: 16797542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.