BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 5082995)

  • 1. Phase transitions of phospholipid bilayers and membranes of Acholeplasma laidlawii B visualized by freeze fracturing electron microscopy.
    Verkleij AJ; Ververgaert PH; van Deenen LL; Elbers PF
    Biochim Biophys Acta; 1972 Nov; 288(2):326-32. PubMed ID: 5082995
    [No Abstract]   [Full Text] [Related]  

  • 2. Direct measurement of membrane motion and fluidity by electron microscopy.
    Hui SW
    Nature; 1976 Jul; 262(5566):303-5. PubMed ID: 958378
    [No Abstract]   [Full Text] [Related]  

  • 3. Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid Vesicles.
    Eicher B; Marquardt D; Heberle FA; Letofsky-Papst I; Rechberger GN; Appavou MS; Katsaras J; Pabst G
    Biophys J; 2018 Jan; 114(1):146-157. PubMed ID: 29320681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chilling-Susceptibility of the Blue-Green Alga Anacystis nidulans: III. LIPID PHASE OF CYTOPLASMIC MEMBRANE.
    Ono TA; Murata N
    Plant Physiol; 1982 Jan; 69(1):125-9. PubMed ID: 16662143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural calorimetry of main transition of supported DMPC bilayers by temperature-controlled AFM.
    Enders O; Ngezahayo A; Wiechmann M; Leisten F; Kolb HA
    Biophys J; 2004 Oct; 87(4):2522-31. PubMed ID: 15454447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ripples and the formation of anisotropic lipid domains: imaging two-component supported double bilayers by atomic force microscopy.
    Leidy C; Kaasgaard T; Crowe JH; Mouritsen OG; Jørgensen K
    Biophys J; 2002 Nov; 83(5):2625-33. PubMed ID: 12414696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treponema pallidum rare outer membrane proteins: analysis of mobility by freeze-fracture electron microscopy.
    Bourell KW; Schulz W; Norgard MV; Radolf JD
    J Bacteriol; 1994 Mar; 176(6):1598-608. PubMed ID: 8132453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The morphologic characteristics of intercellular junctions between normal human liver cells and cells from patients with extrahepatic cholestasis.
    Robenek H; Herwig J; Themann H
    Am J Pathol; 1980 Jul; 100(1):93-114. PubMed ID: 7395970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane structures of Acholeplasma laidlawii and its virus.
    Liska B; Janisch R
    Folia Microbiol (Praha); 1981; 26(4):287-93. PubMed ID: 7286852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR study of synthetic lecithin bilayers in the vicinity of the gel-liquid--crystal transition.
    Pope JM; Walker L; Cornell BA; Francis GW
    Biophys J; 1981 Aug; 35(2):509-20. PubMed ID: 7272448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia.
    Farber JL; Chien KR; Mittnacht S
    Am J Pathol; 1981 Feb; 102(2):271-81. PubMed ID: 7008623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry of phase-separated domains in phospholipid bilayers by diffraction-contrast electron microscopy.
    Hui SW
    Biophys J; 1981 Jun; 34(3):383-95. PubMed ID: 6894707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral diffusion of lipids and glycophorin in solid phosphatidylcholine bilayers. The role of structural defects.
    Kapitza HG; Rüppel DA; Galla HJ; Sackmann E
    Biophys J; 1984 Mar; 45(3):577-87. PubMed ID: 6713070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural aspects of localized membrane damage in Spirillum serpens VHL early in its association with Bdellovibrio bacteriovorus 109D.
    Snellen JE; Starr MP
    Arch Microbiol; 1974; 100(3):179-95. PubMed ID: 4615643
    [No Abstract]   [Full Text] [Related]  

  • 15. Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique.
    Ojakian GK; Satir P
    Proc Natl Acad Sci U S A; 1974 May; 71(5):2052-6. PubMed ID: 4525315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane intercalated particles in human erythrocyte ghosts: sites of preferred passage of water molecules at low temperature.
    Pinto da Silva P
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1339-43. PubMed ID: 4514303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral phase separations in membrane lipids and the mechanism of sugar transport in Escherichia coli.
    Linden CD; Wright KL; McConnell HM; Fox CF
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2271-5. PubMed ID: 4365369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible, thermotropic alteration of nuclear membrane stucture and nucleocytoplasmic RNA transport in Tetrahymena.
    Wunderlich F; Batz W; Speth V; Wallach DF
    J Cell Biol; 1974 Jun; 61(3):633-40. PubMed ID: 4209577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on the distribution of membrane particles in Streptococcus faecalis as seen by the freeze-fracture technique.
    Tsien HC; Higgins ML
    J Bacteriol; 1974 May; 118(2):725-34. PubMed ID: 4208140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cryopreservation of Chlorella. 2. Effect of growth temperature on freezing tolerance.
    Morris GJ
    Arch Microbiol; 1976 Apr; 107(3):309-12. PubMed ID: 1275639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.