These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 5083146)

  • 81. Transient stimulation of deoxyribonucleic acid-dependent ribonucleic acid polymerase and histone acetylation in human embryonic kidney cultures infected with adenovirus 2 or 12: apparent induction of host ribonucleic acid synthesis.
    Ledinko N
    J Virol; 1970 Jul; 6(1):58-68. PubMed ID: 5471477
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Inhibition of HeLa cell protein synthesis during adenovirus infection. Restriction of cellular messenger RNA sequences to the nucleus.
    Beltz GA; Flint SJ
    J Mol Biol; 1979 Jun; 131(2):353-73. PubMed ID: 226719
    [No Abstract]   [Full Text] [Related]  

  • 83. Evidence that stimulatory factor(s) of RNA polymerase II participates in accurate transcription in a HeLa cell lysate.
    Sekimizu K; Yokoi H; Natori S
    J Biol Chem; 1982 Mar; 257(6):2719-21. PubMed ID: 7061445
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The mechanism of action of aflatoxin B 1 ; observations on virus-infected cells.
    Crook LE; Harley EH; Cohen A; Rees KR
    Chem Biol Interact; 1972 Jul; 5(2):107-16. PubMed ID: 4339403
    [No Abstract]   [Full Text] [Related]  

  • 85. A tentative initiation inhibitor of chromosomal heterogeneous RNA synthesis.
    Egyházi E
    J Mol Biol; 1974 Mar; 84(1):173-83. PubMed ID: 4857470
    [No Abstract]   [Full Text] [Related]  

  • 86. Relationship between deoxyribonucleic acid-like ribonucleic acid synthesis and inhibition of host protein synthesis in type 5 adenovirus-infected KB cells.
    Bello LJ; Ginsberg HS
    J Virol; 1969 Feb; 3(2):106-13. PubMed ID: 5774136
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Relationship between the RNA polymerase activities from influenza virions and influenza virus-infected cells.
    Horisberger M; Guskey LE
    J Virol; 1974 Jan; 13(1):230-3. PubMed ID: 4811008
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Analysis of the efficiency of adenovirus transcription.
    Iftode C; Flint SJ
    Methods Mol Med; 2007; 131():1-14. PubMed ID: 17656771
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rhinovirus RNA polymerase: products and kinetics of appearance in human diploid cells.
    Koliais SI; Dimmock NJ
    J Virol; 1974 Nov; 14(5):1035-9. PubMed ID: 4372387
    [TBL] [Abstract][Full Text] [Related]  

  • 90. The effect of malathion on RNA polymerase activity of cell nuclei and transcription products in lymphocyte culture.
    Wiszkowska H; Kulamowicz I; Malinowska A; Walter Z
    Environ Res; 1986 Dec; 41(2):372-7. PubMed ID: 2430789
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Early events in the interaction of adenoviruses with HeLa cells. 3. Relationship between an ATPase activity in nuclear envelopes and transfer of core material: a hypothesis.
    Chardonnet Y; Dales S
    Virology; 1972 May; 48(2):342-59. PubMed ID: 4260165
    [No Abstract]   [Full Text] [Related]  

  • 92. A comparison of nuclear and cytoplasmic viral RNAs synthesized early in productive infection with adenovirus 2.
    Raskas HJ; Craig EA
    Prog Nucleic Acid Res Mol Biol; 1976; 19():293-300. PubMed ID: 1019348
    [No Abstract]   [Full Text] [Related]  

  • 93. N-6-methyl-adenosine in adenovirus type 2 nuclear RNA is conserved in the formation of messenger RNA.
    Chen-Kiang S; Nevins JR; Darnell JE
    J Mol Biol; 1979 Dec; 135(3):733-52. PubMed ID: 537090
    [No Abstract]   [Full Text] [Related]  

  • 94. The low molecular weight of RNAs of adenovirus 2-infected cells.
    Mathews MB; Pettersson U
    J Mol Biol; 1978 Feb; 119(2):293-328. PubMed ID: 633371
    [No Abstract]   [Full Text] [Related]  

  • 95. Morphological studies of transcription.
    Miller OL; Bakken AH
    Acta Endocrinol Suppl (Copenh); 1972; 168():155-77. PubMed ID: 4562652
    [No Abstract]   [Full Text] [Related]  

  • 96. Origin of mRNA in HeLa cells and the implications for chromosome structure.
    Jelinek W; Mollov G; Salditt M; Wall R; Sheiness D; Darnell JE
    Cold Spring Harb Symp Quant Biol; 1974; 38():891-8. PubMed ID: 4524793
    [No Abstract]   [Full Text] [Related]  

  • 97. Studies on the mechanism of enhancement of adenovirus 7 infection in African green monkey cells by simian virus 40: formation of adenovirus-specific RNA.
    Baum SG; Wiese WH; Reich PR
    Virology; 1968 Feb; 34(2):373-6. PubMed ID: 4295919
    [No Abstract]   [Full Text] [Related]  

  • 98. RNA polymerase activity in human brain tumors.
    Slagel DE
    Acta Neuropathol; 1974; 30(4):355-9. PubMed ID: 4451041
    [No Abstract]   [Full Text] [Related]  

  • 99. Differential accumulation of virus-specific RNA during the cell cycle of adenovirus-transformed rat embyro cells.
    Hoffmann PR; Darnell JE
    J Virol; 1975 Apr; 15(4):806-11. PubMed ID: 1167915
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Transcription of RNA in isolated nuclei.
    Marzluff WF
    Methods Cell Biol; 1978; 19():317-32. PubMed ID: 692419
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.