These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 508352)

  • 21. Cholesterol biosynthesis from lanosterol: development of a novel assay method and characterization of rat liver microsomal lanosterol delta 24-reductase.
    Bae SH; Paik YK
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):609-16. PubMed ID: 9291139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth-rate-related and hydroxysterol-induced changes in membrane fluidity of cultured hepatoma cells: correlation with 3-hydroxy-3-methyl glutaryl CoA reductase activity.
    Richert L; Castagna M; Beck JP; Rong S; Luu B; Ourisson G
    Biochem Biophys Res Commun; 1984 Apr; 120(1):192-8. PubMed ID: 6538790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition, post-hydroxymethylglutaryl-CoA regulation and relation to cell growth of cholesterol biosynthesis in cultured human skin fibroblasts.
    Tabacik C; Aliau S; Sultan C
    Biochim Biophys Acta; 1985 Nov; 837(2):152-62. PubMed ID: 4052443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of carbon monoxide on the nature of the accumulated 4,4-dimethyl sterol precursors of cholesterol during its biosynthesis from (2-14C)mevalonic acid in vitro.
    Gibbons GF; Mitropoulos KA
    Biochem J; 1973 Mar; 132(3):439-48. PubMed ID: 4724584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of hepatic cholesterogenesis by polar steroids accumulated after cholesterol feeding.
    Aguilera JA; García-Molina V; Arce V; García-Peregrín E
    Biosci Rep; 1988 Apr; 8(2):155-62. PubMed ID: 3408811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulatory role of mevalonate in the growth of normal and neoplastic human mammary epithelial cells.
    Larsson O; Blegen H
    Anticancer Res; 1993; 13(4):1075-9. PubMed ID: 8352528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-human primate platelets and arterial tissue cannot convert preformed [14C]lanosterol into[14C]cholesterol in vivo.
    Derksen A; Meguid MM; Cohen P
    Biochem J; 1976 Jul; 158(1):157-9. PubMed ID: 822845
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of phospholipids fatty acid composition in reuber H35 hepatoma cells: effect on HMG-CoA reductase activity.
    García-Pelayo MC; García-Peregrín E; Martínez-Cayuela M
    J Cell Biochem; 2003 Oct; 90(3):586-91. PubMed ID: 14523992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of triarimol on cholesterol biosynthesis in rat-liver subcellular.
    Mitropoulos KA; Gibbons GF
    Biochem Biophys Res Commun; 1976 Aug; 71(3):892-900. PubMed ID: 962959
    [No Abstract]   [Full Text] [Related]  

  • 30. Concerning the role of 24,25-dihydrolanosterol and lanostanol in sterol biosynthesis by cultured cells.
    Nes WD; Norton RA; Parish EJ; Meenan A; Popják G
    Steroids; 1989; 53(3-5):461-75. PubMed ID: 2799854
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of cholesterol biosynthesis by carbon monoxide: accumulation of lanosterol and 24,25-dihydrolanosterol.
    Gibbons GF; Mitropoulos KA
    Biochem J; 1972 Mar; 127(1):315-7. PubMed ID: 5073750
    [No Abstract]   [Full Text] [Related]  

  • 32. [Formation of mevalonic acid, sterols and bile acids from [1-14C]acetyl-CoA and [2-14C]malonyl-CoA in the liver of rabbits with experimental hypercholesterolemia].
    Klimov AN; Poliakova ED; Vasil'eva LE; Denisenko TV; Dizhe EB
    Biokhimiia; 1987 Feb; 52(2):239-46. PubMed ID: 2882784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic studies of lanosterol C-32 demethylation. Conditions which promote oxysterol intermediate accumulation during the demethylation process.
    Trzaskos JM; Fischer RT; Favata MF
    J Biol Chem; 1986 Dec; 261(36):16937-42. PubMed ID: 3782148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of various oxygenated sterols on cellular sterol biosynthesis in Chinese hamster lung cells resistant to 25-hydroxycholesterol.
    Cavenee WK; Gibbons GF; Chen HW; Kandutsch AA
    Biochim Biophys Acta; 1979 Nov; 575(2):255-65. PubMed ID: 508785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of cholesterol biosynthesis and acetyl-coenzyme A synthetase by bovine milk and orotic acid.
    Bernstein BA; Richardson T; Amundson CH
    J Dairy Sci; 1977 Dec; 60(12):1846-53. PubMed ID: 23394
    [No Abstract]   [Full Text] [Related]  

  • 36. On metabolic degradations of squalene, lanosterol and cholesterol in rat liver in vivo. Evidence for recycling of metabolites for the synthesis of isoprene compounds.
    Wiss O; Wiss V
    Helv Chim Acta; 1977 Sep; 60(6):1961-6. PubMed ID: 914630
    [No Abstract]   [Full Text] [Related]  

  • 37. Reversible phosphorylation of 3-hydroxy-3-methylglutaryl CoA reductase in Morris hepatomas.
    Gregg RG; Wilce PA
    Biochem Biophys Res Commun; 1983 Jul; 114(2):473-8. PubMed ID: 6603842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative aspects of mevalonate metabolism in rat liver and kidney.
    Jabalquinto AM; Cardemil E
    Comp Biochem Physiol B; 1982; 73(2):181-7. PubMed ID: 6756767
    [No Abstract]   [Full Text] [Related]  

  • 39. Regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA contents in human hepatoma cell line Hep G2 by distinct classes of mevalonate-derived metabolites.
    Cohen LH; Griffioen M
    Biochem J; 1988 Oct; 255(1):61-7. PubMed ID: 2848511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of 3-hydroxy-3-methylglutaryl-CoA reductase activity and gene expression by dehydroepiandrosterone in preneoplastic liver nodules.
    Pascale RM; Simile MM; De Miglio MR; Nufris A; Seddaiu MA; Muroni MR; Danni O; Rao KN; Feo F
    Carcinogenesis; 1995 Jul; 16(7):1537-42. PubMed ID: 7614686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.