These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 5083528)

  • 1. Adsorption--desorption of parathion as affected by soil organic matter.
    Saltzman S; Kliger L; Yaron B
    J Agric Food Chem; 1972; 20(6):1224-6. PubMed ID: 5083528
    [No Abstract]   [Full Text] [Related]  

  • 2. Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils.
    Rama Krishna K; Philip L
    J Hazard Mater; 2008 Dec; 160(2-3):559-67. PubMed ID: 18455300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistence of parathion and its oxidation to paraoxon on the soil surface as related to worker reentry into treated crops.
    Spencer WF; Cliath MM; Davis KR
    Bull Environ Contam Toxicol; 1975 Sep; 14(3):265-72. PubMed ID: 1174737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between omega values and parathion sorption capacity in soils.
    Wahid PA; Sethunathan N
    J Environ Sci Health B; 1977; 12(2):147-54. PubMed ID: 874294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The partitioning and modelling of pesticide parathion in a surfactant-assisted soil-washing system.
    Chu W; Chan KH; Choy WK
    Chemosphere; 2006 Jul; 64(5):711-6. PubMed ID: 16403421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ferrous sulfate on parathion degradation in flooded soil.
    Rao YR; Sethunathan N
    J Environ Sci Health B; 1979; 14(3):335-51. PubMed ID: 438468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Degradation of the insecticide parathion in soil].
    Hirata R; Prasad S; Luchini LC; Nunes Fde A; Mesquita TB; Rüegg EF
    An Acad Bras Cienc; 1986 Dec; 58(4):561-8. PubMed ID: 3674611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactivity and persistence of some parathion formulations in soil.
    Sacher RM; Ludvik GF; Deming JM
    J Econ Entomol; 1972 Apr; 65(2):329-32. PubMed ID: 5016654
    [No Abstract]   [Full Text] [Related]  

  • 10. Long erm persistence of parathion in soil.
    Stewart DK; Chisholm D; Ragab MT
    Nature; 1971 Jan; 229(5279):47. PubMed ID: 4922785
    [No Abstract]   [Full Text] [Related]  

  • 11. Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide.
    Cai P; He X; Xue A; Chen H; Huang Q; Yu J; Rong X; Liang W
    J Hazard Mater; 2011 Jan; 185(2-3):1032-6. PubMed ID: 21035256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Worker environment research. IV. The effect of dust derived from several soil types on the dissipation of parathion and paraoxon dislodgable residues on citrus foliage.
    Adams JD; Iwata Y; Gunther FA
    Bull Environ Contam Toxicol; 1976 May; 15(5):547-54. PubMed ID: 1268361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parathion degradation in submerged rice soils in the Philippines.
    Sethunathan N; Yoshida T
    J Agric Food Chem; 1973; 21(3):504-6. PubMed ID: 4708819
    [No Abstract]   [Full Text] [Related]  

  • 14. Adsorption of methyl parathion by soils.
    Kishk FM; Abu-Shara TM; Bakry N; Abou-Donia MB
    Bull Environ Contam Toxicol; 1979 Aug; 22(6):733-8. PubMed ID: 486777
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparison of analytical results obtained by gas and by high-pressure liquid chromatography of parathion and paraoxon in extracts prepared from orchard soil dust and dislodgable residues on orange leaves.
    Kvalvåg J; Elliott DL; Iwata Y; Gunther FA
    Bull Environ Contam Toxicol; 1977 Mar; 17(3):253-60. PubMed ID: 851649
    [No Abstract]   [Full Text] [Related]  

  • 16. [Effects of oxalate on acid phosphatase adsorption and its activity on soil colloids and minerals].
    Zhao Z; Huang Q; Jiang X; Wang D; Gao H; Li X
    Ying Yong Sheng Tai Xue Bao; 2005 Mar; 16(3):533-8. PubMed ID: 15943372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of long term organic amendments on adsorption-desorption of thiram onto a luvisol soil derived from loess.
    Filipe OM; Vidal MM; Scherer HW; Schneider RJ; Duarte AC; Esteves VI; Santos EB
    Chemosphere; 2010 Jun; 80(3):293-300. PubMed ID: 20434753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parathion residues in environmental samples from untreated areas.
    Deubert KH; Gray RS
    Bull Environ Contam Toxicol; 1976 May; 15(5):613-6. PubMed ID: 1268370
    [No Abstract]   [Full Text] [Related]  

  • 19. Fate of parathion in ground water in commercial cranberry culture in the New Jersey pinelands.
    Winnett G; Marucci P; Reduker S; Uchrin CG
    Bull Environ Contam Toxicol; 1990 Sep; 45(3):382-8. PubMed ID: 2257333
    [No Abstract]   [Full Text] [Related]  

  • 20. Decay of parathion and endosulfan residues on field-treated tobacco, South Carolina--1971.
    Keil JE; Loadholt CB; Brown BL; Sandifer SH; Sitterly WR
    Pestic Monit J; 1972 Jun; 6(1):73-5. PubMed ID: 5056442
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.