These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 5084357)

  • 41. Purification of electron-transfer components from sulfate-reducing bacteria.
    Gall JL; Forget N
    Methods Enzymol; 1978; 53():613-34. PubMed ID: 213690
    [No Abstract]   [Full Text] [Related]  

  • 42. Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774)--a heterooligomer heme protein with sulfite reductase activity.
    Pereira IC; Abreu IA; Xavier AV; LeGall J; Teixeira M
    Biochem Biophys Res Commun; 1996 Jul; 224(3):611-8. PubMed ID: 8713097
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bisulfite reductase of Desulfovibrio vulgaris: explanation for product formation.
    Drake HL; Akagi JM
    J Bacteriol; 1977 Oct; 132(1):139-43. PubMed ID: 914772
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on yeast sulfite reductase. 3. Further characterization.
    Yoshimoto A; Sato R
    Biochim Biophys Acta; 1970 Nov; 220(2):190-205. PubMed ID: 4395131
    [No Abstract]   [Full Text] [Related]  

  • 45. Biochemical studies on sulfate-reducing bacteria. IX. Sulfite reductase.
    ISHIMOTO M; YAGI T
    J Biochem; 1961 Feb; 49():103-9. PubMed ID: 13718010
    [No Abstract]   [Full Text] [Related]  

  • 46. Isolation from Aspergillus nidulans, of a protein catalyzing the reduction of sulfite by reduced viologen dyes.
    Yoshimoto A; Nakamura T; Sato R
    J Biochem; 1967 Dec; 62(6):756-66. PubMed ID: 5589532
    [No Abstract]   [Full Text] [Related]  

  • 47. Characterization of a dissimilatory-type sulfite reductase, desulfoviridin, from Desulfovibrio africanus Benghazi.
    Seki Y; Nagai Y; Ishimoto M
    J Biochem; 1985 Dec; 98(6):1535-43. PubMed ID: 4093441
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Selective recovery of nickel over iron from a nickel-iron solution using microbial sulfate reduction in a gas-lift bioreactor.
    Bijmans MF; van Helvoort PJ; Dar SA; Dopson M; Lens PN; Buisman CJ
    Water Res; 2009 Feb; 43(3):853-61. PubMed ID: 19059621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Adenylylsulfate reductases from archaea and bacteria are 1:1 alphabeta-heterodimeric iron-sulfur flavoenzymes--high similarity of molecular properties emphasizes their central role in sulfur metabolism.
    Fritz G; Büchert T; Huber H; Stetter KO; Kroneck PM
    FEBS Lett; 2000 May; 473(1):63-6. PubMed ID: 10802060
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria.
    Brondino CD; Passeggi MC; Caldeira J; Almendra MJ; Feio MJ; Moura JJ; Moura I
    J Biol Inorg Chem; 2004 Mar; 9(2):145-51. PubMed ID: 14669076
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Thiosulfate as an intermediate product of bacterial sulfate reduction].
    Vaĭnshteĭn MB; Matrosov AG; Baskunov BP; Ziakun AM; Ivanov MV
    Mikrobiologiia; 1980; 49(6):855-8. PubMed ID: 7207258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and steady-state kinetic analysis of yeast thiosulfate reductase.
    Uhteg LC; Westley J
    Arch Biochem Biophys; 1979 Jun; 195(1):211-22. PubMed ID: 383018
    [No Abstract]   [Full Text] [Related]  

  • 53. Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeglobus fulgidus.
    Lampreia J; Fauque G; Speich N; Dahl C; Moura I; Trüper HG; Moura JJ
    Biochem Biophys Res Commun; 1991 Nov; 181(1):342-7. PubMed ID: 1659811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for thiosulfate formation during sulfite reduction by Desulfovibrio vulgaris.
    Findley JE; Akagi JM
    Biochem Biophys Res Commun; 1969 Jul; 36(2):266-71. PubMed ID: 5799644
    [No Abstract]   [Full Text] [Related]  

  • 55. Superoxide dismutase in some obligately anaerobic bacteria.
    Hewitt J; Morris JG
    FEBS Lett; 1975 Feb; 50(3):315-8. PubMed ID: 163764
    [No Abstract]   [Full Text] [Related]  

  • 56. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum.
    Fry B; Gest H; Hayes JM
    FEMS Microbiol Lett; 1985; 27():227-32. PubMed ID: 11540842
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial sulfite respiration.
    Simon J; Kroneck PM
    Adv Microb Physiol; 2013; 62():45-117. PubMed ID: 23481335
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular cloning of the gene encoding flavoredoxin, a flavoprotein from Desulfovibrio gigas.
    Agostinho M; Oliveira S; Broco M; Liu MY; LeGall J; Rodrigues-Pousada C
    Biochem Biophys Res Commun; 2000 Jun; 272(3):653-6. PubMed ID: 10860809
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purification and properties of hydrogenase, an iron sulfur protein, from Clostridium pasteurianum W5.
    Nakos G; Mortenson L
    Biochim Biophys Acta; 1971 Mar; 227(3):576-83. PubMed ID: 5569125
    [No Abstract]   [Full Text] [Related]  

  • 60. Isolation of sulfate-reducing bacteria from the terrestrial deep subsurface and description of Desulfovibrio cavernae sp. nov.
    Sass H; Cypionka H
    Syst Appl Microbiol; 2004 Sep; 27(5):541-8. PubMed ID: 15490555
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.