These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 5084357)

  • 61. Structural properties of hydrogenase from Clostridium pasteurianum W5.
    Nakos G; Mortenson LE
    Biochemistry; 1971 Jun; 10(13):2442-9. PubMed ID: 4326766
    [No Abstract]   [Full Text] [Related]  

  • 62. Purification, characterization and biological activity of three forms of ferredoxin from the sulfate-reducing bacterium Desulfovibrio gigas.
    Bruschi M; Hatchikian C; Le Gall J; Moura JJ; Xavier AV
    Biochim Biophys Acta; 1976 Nov; 449(2):275-84. PubMed ID: 990295
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ferredoxin:nitrite oxidoreductase from Chlorella. Purification and properties.
    Zumft WG
    Biochim Biophys Acta; 1972 Aug; 276(2):363-75. PubMed ID: 5068817
    [No Abstract]   [Full Text] [Related]  

  • 64. Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium.
    Kobayashi K; Tachibana S; Ishimoto M
    J Biochem; 1969 Jan; 65(1):155-7. PubMed ID: 5771706
    [No Abstract]   [Full Text] [Related]  

  • 65. The effect of gram-positive (Desulfosporosinus orientis) and gram-negative (Desulfovibrio desulfuricans) sulfate-reducing bacteria on iron sulfide mineral precipitation.
    Stanley W; Southam G
    Can J Microbiol; 2018 Sep; 64(9):629-637. PubMed ID: 30169128
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enzymatic redox chemistry: a proposed reaction pathway for the six-electron reduction of SO3(2-) to S2- by the assimilatory-type sulfite reductase from Desulfovibrio vulgaris (Hildenborough).
    Tan J; Cowan JA
    Biochemistry; 1991 Sep; 30(36):8910-7. PubMed ID: 1888748
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cytochrome c 3 . A class of electron transfer heme proteins found in both photosynthetic and sulfate-reducing bacteria.
    Meyer TE; Bartsch RG; Kamen MD
    Biochim Biophys Acta; 1971 Sep; 245(2):453-64. PubMed ID: 5003700
    [No Abstract]   [Full Text] [Related]  

  • 68. Characterization of the periplasmic hydrogenase from Desulfovibrio gigas.
    Hatchikian EC; Bruschi M; Le Gall J
    Biochem Biophys Res Commun; 1978 May; 82(2):451-61. PubMed ID: 208565
    [No Abstract]   [Full Text] [Related]  

  • 69. Deletion of flavoredoxin gene in Desulfovibrio gigas reveals its participation in thiosulfate reduction.
    Broco M; Rousset M; Oliveira S; Rodrigues-Pousada C
    FEBS Lett; 2005 Aug; 579(21):4803-7. PubMed ID: 16099456
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The stereospecificity of the citrate synthase in sulfate-reducing and photosynthetic bacteria.
    Gottschalk G
    Eur J Biochem; 1968 Aug; 5(3):346-51. PubMed ID: 5680354
    [No Abstract]   [Full Text] [Related]  

  • 71. The association of hydrogenase and dithionite reductase activities with the nitrite reductase of Desulfovibrio desulfuricans.
    Steenkamp DJ; Peck HD
    Biochem Biophys Res Commun; 1980 May; 94(1):41-8. PubMed ID: 7387702
    [No Abstract]   [Full Text] [Related]  

  • 72. Observations on the rhodanese activity of Desulfotomaculum nigrificans.
    Burton CP; Akagi JM
    J Bacteriol; 1971 Jul; 107(1):375-6. PubMed ID: 5563874
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A sulfate, sulfite and thiosulfate incorporating system in Candida utilis.
    Alonso A; Benítez J; Díaz MA
    Folia Microbiol (Praha); 1984; 29(1):8-13. PubMed ID: 6538867
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens.
    Kletzin A
    J Bacteriol; 1989 Mar; 171(3):1638-43. PubMed ID: 2493451
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Bacterial nitrate reductases. VII. Assay of enzymes A and B by a colorimetric method].
    Pichinoty F; Mucchielli A; Pelatan C
    Arch Mikrobiol; 1971; 75(4):353-9. PubMed ID: 5549359
    [No Abstract]   [Full Text] [Related]  

  • 76. Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite.
    WILSON LG; ASAHI T; BANDURSKI RS
    J Biol Chem; 1961 Jun; 236():1822-9. PubMed ID: 13785690
    [No Abstract]   [Full Text] [Related]  

  • 77. Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction.
    Trudinger PA
    J Bacteriol; 1970 Oct; 104(1):158-70. PubMed ID: 5473884
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The role of adenosine-5'-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans.
    PECK HD
    J Biol Chem; 1962 Jan; 237():198-203. PubMed ID: 14484820
    [No Abstract]   [Full Text] [Related]  

  • 79. Hydroxyhydroquinone reductase, the initial enzyme involved in the degradation of hydroxyhydroquinone (1,2,4-trihydroxybenzene) by Desulfovibrio inopinatus.
    Reichenbecher W; Philipp B; Suter MJ; Schink B
    Arch Microbiol; 2000 Mar; 173(3):206-12. PubMed ID: 10763753
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The evaluation of media used to enumerate sulphate reducing bacteria.
    Mara DD; Williams DJ
    J Appl Bacteriol; 1970 Sep; 33(3):543-52. PubMed ID: 4923562
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.