These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 5086126)

  • 1. [Oxidation of trivalent antimony to higher oxides as a source of energy for the development of a new autotrophic organism Stibiobacter gen. n].
    Lialikova NN
    Dokl Akad Nauk SSSR; 1972 Aug; 205(5):1228-9. PubMed ID: 5086126
    [No Abstract]   [Full Text] [Related]  

  • 2. [Assimilation of carbon dioxide by Stibiobacter senarmontii].
    Lialikova NN; Vedenina IIa; Romanova AK
    Mikrobiologiia; 1976; 45():552-4. PubMed ID: 1004256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Stibiobacter senarmontii--a new microorganism oxidizing antimony].
    Lialikova NN
    Mikrobiologiia; 1974; 43(6):941-8. PubMed ID: 4449497
    [No Abstract]   [Full Text] [Related]  

  • 4. [Antimonite oxidation by a new culture of thiobacteria].
    Lialikova NN
    Dokl Akad Nauk SSSR; 1967 Sep; 176(6):1432-4. PubMed ID: 5623105
    [No Abstract]   [Full Text] [Related]  

  • 5. [Autotrophic assimilation of carbon dioxide by bacteria oxidizing carbon monoxide].
    Nozhevnikova AN; Savel'eva ND
    Mikrobiologiia; 1972; 41(6):939-46. PubMed ID: 4657967
    [No Abstract]   [Full Text] [Related]  

  • 6. [Oxidation of gold-antimony ores by a thermoacidophilic microbial consortium].
    Tsaplina IA; Sorokin VV; Zhuravleva AE; Melamud VS; Bogdanova TI; Kondrat'eva TF
    Mikrobiologiia; 2013; 82(6):660-71. PubMed ID: 25509404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 'That which does not kill us only makes us stronger': the role of carbon monoxide in thermophilic microbial consortia.
    Techtmann SM; Colman AS; Robb FT
    Environ Microbiol; 2009 May; 11(5):1027-37. PubMed ID: 19239487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways.
    Li J; Wang Q; Oremland RS; Kulp TR; Rensing C; Wang G
    Appl Environ Microbiol; 2016 Sep; 82(18):5482-95. PubMed ID: 27342551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Assimilation of carbon dioxide by chemo-autotrophic bacteria].
    AUBERT JP; MILHAUD G; MILLET J
    Ann Inst Pasteur (Paris); 1957 May; 92(5):679-83. PubMed ID: 13425119
    [No Abstract]   [Full Text] [Related]  

  • 10. New insights into microbial oxidation of antimony and arsenic.
    Lehr CR; Kashyap DR; McDermott TR
    Appl Environ Microbiol; 2007 Apr; 73(7):2386-9. PubMed ID: 17308197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthesis: transduction of light energy into chemical energy.
    Mathis P
    Symp Soc Exp Biol; 1983; 36():223-48. PubMed ID: 6443328
    [No Abstract]   [Full Text] [Related]  

  • 12. [Formation of pentavalent antimony minerals as a result of bacterial activity].
    Lialikova NN; Shlain LB; Trofimov VG
    Izv Akad Nauk SSSR Biol; 1974; (3):440-4. PubMed ID: 4461760
    [No Abstract]   [Full Text] [Related]  

  • 13. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial ecology. Out of thin air.
    Pala C
    Science; 2008 Jun; 320(5883):1582-3. PubMed ID: 18566261
    [No Abstract]   [Full Text] [Related]  

  • 15. Molecular hydrogen from water radiolysis as an energy source for bacterial growth in a basin containing irradiating waste.
    Galès G; Libert MF; Sellier R; Cournac L; Chapon V; Heulin T
    FEMS Microbiol Lett; 2004 Nov; 240(2):155-62. PubMed ID: 15522503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-oxidation of Sb(III) in the seawater by marine phytoplankton-transition metals-light system.
    Li SX; Zheng FY; Hong HS; Deng NS; Zhou XY
    Chemosphere; 2006 Nov; 65(8):1432-9. PubMed ID: 16735057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological nitrate removal in industrial wastewater treatment: which electron donor we can choose.
    Park JY; Yoo YJ
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):415-29. PubMed ID: 19148639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Carbon and energy sources of biosynthesis in sulfate reducing bacteria].
    Sorokin IuI
    Mikrobiologiia; 1966; 35(5):761-6. PubMed ID: 6002773
    [No Abstract]   [Full Text] [Related]  

  • 19. Energy model and metabolic flux analysis for autotrophic nitrifiers.
    Poughon L; Dussap CG; Gros JB
    Biotechnol Bioeng; 2001 Feb; 72(4):416-33. PubMed ID: 11180062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.
    Shrout JD; Scheetz TE; Casavant TL; Parkin GF
    Appl Microbiol Biotechnol; 2005 Apr; 67(2):261-8. PubMed ID: 15834721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.