BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 508745)

  • 1. Distribution of sulfhydryl groups in intestinal brush border membranes. Localization of side-chains essential for glucose transport and phlorizin binding.
    Klip A; Grinstein S; Semenza G
    Biochim Biophys Acta; 1979 Dec; 558(2):233-45. PubMed ID: 508745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial purification of the sugar carrier of intestinal brush border membranes. Enrichment of the phlorizin-binding component by selective extractions.
    Klip A; Grinstein S; Semenza G
    J Membr Biol; 1979 Dec; 51(1):47-73. PubMed ID: 522129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the sugar carrier of intestinal brush-border membranes with HgCl2.
    Klip A; Grinstein S; Biber J; Semenza G
    Biochim Biophys Acta; 1980 May; 598(1):100-14. PubMed ID: 6448071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells.
    Toggenburger G; Kessler M; Rothstein A; Semenza G; Tannenbaum C
    J Membr Biol; 1978 May; 40(3):269-90. PubMed ID: 660646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence probe studies on the interaction of phlorizin with rabbit intestinal brush border membranes.
    Ohyashiki T; Mohri T
    J Biochem; 1983 Apr; 93(4):1167-73. PubMed ID: 6863237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes.
    Gibbs EM; Hosang M; Reber BF; Semenza G; Diedrich DF
    Biochim Biophys Acta; 1982 Jun; 688(2):547-56. PubMed ID: 7201853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-affinity phlorizin binding to brush border membranes from small intestine: identity with (a part of) the glucose transport system, dependence on Na +-gradient, partial purification.
    Tannenbaum C; Toggenburger G; Kessler M; Rothstein A; Semenza G
    J Supramol Struct; 1977; 6(4):519-33. PubMed ID: 413010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen ion-coupled transport of D-glucose by phlorizin-sensitive sugar carrier in intestinal brush-border membranes.
    Hoshi T; Takuwa N; Abe M; Tajima A
    Biochim Biophys Acta; 1986 Oct; 861(3):483-8. PubMed ID: 3768358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of carboxyl and sulfhydryl residues on rabbit small intestinal brush-border membrane Na(+)-glucose cotransporter.
    Peerce BE; Cedilote M; Clarke RD
    Am J Physiol; 1993 Feb; 264(2 Pt 1):G294-9. PubMed ID: 8447411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane disposition of the phlorizin binding protein of intestinal brush borders.
    Klip A; Grinstein S; Semenza G
    FEBS Lett; 1979 Mar; 99(1):91-6. PubMed ID: 437137
    [No Abstract]   [Full Text] [Related]  

  • 11. Structural state of the Na+/D-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependent D-glucose transport.
    Lin JT; Szwarc K; Kinne R; Jung CY
    Biochim Biophys Acta; 1984 Nov; 777(2):201-8. PubMed ID: 6148966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Labeling of a glucose binding protein in the rabbit intestinal brush border membrane.
    Lemaire J; Maestracci D
    Can J Physiol Pharmacol; 1978 Oct; 56(5):760-70. PubMed ID: 709417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high yield preparation of brush border membrane vesicles from organ-cultured embryonic chick jejunum: demonstration of insulin sensitivity of Na(+)-dependent D-glucose transport.
    Debiec H; Cross HS; Peterlik M
    J Nutr; 1991 Jan; 121(1):105-13. PubMed ID: 1992047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.
    Silverman M; Black J
    Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of the sodium-dependent d-glucose transport protein from brush-border membranes.
    Malathi P; Preiser H
    Biochim Biophys Acta; 1983 Nov; 735(3):314-24. PubMed ID: 6685531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of [3H]phlorizin and its binding behavior to renal brush-border membranes.
    Lin JT; Hahn KD
    Anal Biochem; 1983 Mar; 129(2):337-44. PubMed ID: 6846832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin regulates Na+/glucose cotransporter activity in rat small intestine.
    Fujii Y; Kaizuka M; Hashida F; Maruo J; Sato E; Yasuda H; Kurokawa T; Ishibashi S
    Biochim Biophys Acta; 1991 Mar; 1063(1):90-4. PubMed ID: 2015265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and partial purification of a Na+-dependent phlorizin receptor from dog kidney proximal tubule.
    Silverman M; Speight P
    J Biol Chem; 1986 Oct; 261(29):13820-6. PubMed ID: 3759992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and histochemical localization of the rat intestinal Na(+)-D-glucose cotransporter by monoclonal antibodies.
    Haase W; Heitmann K; Friese W; Ollig D; Koepsell H
    Eur J Cell Biol; 1990 Aug; 52(2):297-309. PubMed ID: 2081531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of thiol groups in the function of the dipeptide/proton cotransport system in rabbit renal brush-border membrane vesicles.
    Miyamoto Y; Tiruppathi C; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1989 Jan; 978(1):25-31. PubMed ID: 2536554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.