These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 508796)

  • 61. Large-scale purification of presynaptic plasma membranes from Torpedo marmorata electric organ.
    Morel N; Marsal J; Manaranche R; Lazereg S; Mazie JC; Israel M
    J Cell Biol; 1985 Nov; 101(5 Pt 1):1757-62. PubMed ID: 2997233
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Recycled synaptic vesicles contain vesicle but not plasma membrane marker, newly synthesized acetylcholine, and a sample of extracellular medium.
    Bonzelius F; Zimmermann H
    J Neurochem; 1990 Oct; 55(4):1266-73. PubMed ID: 2398359
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol.
    Bahr BA; Parsons SM
    Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2267-70. PubMed ID: 3457385
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The electromotor system of Torpedo. A model cholinergic system.
    Whittaker VP
    Naturwissenschaften; 1977 Dec; 64(12):606-11. PubMed ID: 593415
    [TBL] [Abstract][Full Text] [Related]  

  • 65. ATP-dependent calcium uptake by cholinergic synaptic vesicles isolated from Torpedo electric organ.
    Israël M; Manaranche R; Marsal J; Meunier FM; Morel N; Frachon P; Lesbats B
    J Membr Biol; 1980 May; 54(2):115-26. PubMed ID: 7401165
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Factors required for calcium dependent acetylcholine release from isolated torpedo synaptic vesicles.
    Michaelson DM; Pinchasi I; Sokolovsky M
    Biochem Biophys Res Commun; 1978 Feb; 80(3):547-52. PubMed ID: 204306
    [No Abstract]   [Full Text] [Related]  

  • 67. A novel 87,000-Mr protein associated with acetylcholine receptors in Torpedo electric organ and vertebrate skeletal muscle.
    Carr C; Fischbach GD; Cohen JB
    J Cell Biol; 1989 Oct; 109(4 Pt 1):1753-64. PubMed ID: 2793938
    [TBL] [Abstract][Full Text] [Related]  

  • 68. VAT-1 from Torpedo electric organ forms a high-molecular-mass protein complex within the synaptic vesicle membrane.
    Linial M
    Eur J Biochem; 1993 Aug; 216(1):189-97. PubMed ID: 8365405
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes.
    Wallimann T; Walzthöny D; Wegmann G; Moser H; Eppenberger HM; Barrantes FJ
    J Cell Biol; 1985 Apr; 100(4):1063-72. PubMed ID: 3884630
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Translational diffusion coefficient and molecular weight of the acetylcholine receptor from Torpedo marmorata.
    Doster W; Hess B; Watters D; Maelicke A
    FEBS Lett; 1980 May; 113(2):312-4. PubMed ID: 7389902
    [No Abstract]   [Full Text] [Related]  

  • 71. The same 15 kDa proteolipid subunit is a constituent of two different proteins in Torpedo, the acetylcholine releasing protein mediatophore and the vacuolar H+ ATPase.
    Brochier G; Morel N
    Neurochem Int; 1993 Dec; 23(6):525-39. PubMed ID: 8281121
    [TBL] [Abstract][Full Text] [Related]  

  • 72. VAT-1: an abundant membrane protein from Torpedo cholinergic synaptic vesicles.
    Linial M; Miller K; Scheller RH
    Neuron; 1989 Mar; 2(3):1265-73. PubMed ID: 2483112
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Metal ion content of cholinergic synaptic vesicles isolated from the electric organ of Torpedo: effect of stimulation-induced transmitter release.
    Schmidt R; Zimmermann H; Whittaker VP
    Neuroscience; 1980; 5(3):625-38. PubMed ID: 7374962
    [No Abstract]   [Full Text] [Related]  

  • 74. The preparation and characterization of synaptic vesicles of high purity.
    Nagy A; Baker RR; Morris SJ; Whittaker VP
    Brain Res; 1976 Jun; 109(2):285-309. PubMed ID: 132227
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of ouabain and electrical stimulation on the fine structure of nerve endings in the electric organ of Torpedo marmorata.
    Solsona C; Esquerda JE; Marsal J
    Cell Tissue Res; 1981; 220(4):857-71. PubMed ID: 6170454
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A highly antigenic proteoglycan-like component of cholinergic synaptic vesicles.
    Carlson SS; Kelly RB
    J Biol Chem; 1983 Sep; 258(18):11082-91. PubMed ID: 6193120
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Adenosine triphosphatase activity associated with purified cholinergic synaptic vesicles of Torpedo marmorata.
    Breer H; Morris SJ; Whittaker VP
    Eur J Biochem; 1977 Oct; 80(1):313-8. PubMed ID: 144598
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cholinergic synaptic vesicles are metabolically and biophysically heterogeneous even in resting terminals.
    Whittaker VP
    Brain Res; 1990 Mar; 511(1):113-21. PubMed ID: 2331609
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Analysis of the interaction between nicotinic acetylcholine receptor and Na+,K(+)-ATPase in the rat skeletal muscle and the Torpedo electric organ membrane preparation].
    Krivoĭ II; Drabkina TM; Vasil'ev AN; Kravtsova VV; Mandel F
    Ross Fiziol Zh Im I M Sechenova; 2006 Feb; 92(2):191-203. PubMed ID: 16739652
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Presence of a membrane-bound acetylcholinesterase form in a preparation of nerve endings from Torpedo marmorata electric organ.
    Li ZY; Bon C
    J Neurochem; 1983 Feb; 40(2):338-49. PubMed ID: 6822828
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.