These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 5088408)

  • 1. Enzymic mechanism of metabolism of the phosphorothionate insecticides.
    Neal RA
    Arch Intern Med; 1971 Jul; 128(1):118-24. PubMed ID: 5088408
    [No Abstract]   [Full Text] [Related]  

  • 2. Activation of parathion and guthion by mammalian, avian, and piscine liver homogenates and cell fractions.
    Hitchcock M; Murphy SD
    Toxicol Appl Pharmacol; 1971 May; 19(1):37-45. PubMed ID: 4398300
    [No Abstract]   [Full Text] [Related]  

  • 3. [The mode of action of thionophosphoric acid esters. Comparative studies of the appearance of PO analogs after the application of methylparathion and the intensity of intoxication symptoms and esterase inhibition].
    Ackermann H
    Arch Exp Veterinarmed; 1970; 24(6):1293-300. PubMed ID: 4253970
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism of low toxicity of Sumithion toward mammals.
    Miyamoto J
    Residue Rev; 1969; 25():251-64. PubMed ID: 4897165
    [No Abstract]   [Full Text] [Related]  

  • 5. The in vitro metabolism of organophosphorus insecticides by tissue homoegenates from mammals and insect.
    Fukunaga K; Fukami J; Shishido T
    Residue Rev; 1969; 25():233-49. PubMed ID: 4897164
    [No Abstract]   [Full Text] [Related]  

  • 6. Species specificity of phosphate triester anticholinesterases.
    Donninger C
    Bull World Health Organ; 1971; 44(1-3):265-8. PubMed ID: 4999483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake of 32P-parathion and 32P-imidan by Euglena gracilis.
    Kortus J; Macŭch P; Mayer J; Durcek K; Krcméry V
    J Hyg Epidemiol Microbiol Immunol; 1971; 15(1):101-3. PubMed ID: 5102896
    [No Abstract]   [Full Text] [Related]  

  • 8. Carboxylesterase inhibition as an indicator of malathion potentiation in mice.
    Cohen SD; Murphy SD
    J Pharmacol Exp Ther; 1971 Mar; 176(3):733-42. PubMed ID: 5111459
    [No Abstract]   [Full Text] [Related]  

  • 9. Degradation and activation of parathion analogs by microsomal enzymes.
    Nakatsugawa T; Tolman NM; Dahm PA
    Biochem Pharmacol; 1968 Aug; 17(8):1517-28. PubMed ID: 4386233
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolism of organophosphorus insecticides. XI. Metabolic fate of dimethoate in the rat.
    Hassan A; Zayed SM; Bahig MR
    Biochem Pharmacol; 1969 Oct; 18(10):2429-38. PubMed ID: 5403981
    [No Abstract]   [Full Text] [Related]  

  • 11. [Inactivation of O-alkyl-S-hexylmethyl thiophosphonates in animal tissues].
    Rozengart VI; Chingisova RA; Shmeleva VG; Shcherbak IG
    Vopr Med Khim; 1972; 18(5):533-8. PubMed ID: 4634668
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the mechanism of phenobarbital-induced protection against parathion in adult female rats.
    Alary JG; Brodeur J
    J Pharmacol Exp Ther; 1969 Oct; 169(2):159-67. PubMed ID: 5824600
    [No Abstract]   [Full Text] [Related]  

  • 13. The effect of chlorpromazine on the toxicity and biotransformation of parathion in mice.
    Vukovich RA; Triolo AJ; Coon JM
    J Pharmacol Exp Ther; 1971 Aug; 178(2):395-401. PubMed ID: 5570462
    [No Abstract]   [Full Text] [Related]  

  • 14. Age-related differences in parathion and chlorpyrifos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism.
    Atterberry TT; Burnett WT; Chambers JE
    Toxicol Appl Pharmacol; 1997 Dec; 147(2):411-8. PubMed ID: 9439736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of feeding insecticides. Inhibition of carboxyesterase and cholinesterase activities in rats.
    Murphy SD; Cheever KL
    Arch Environ Health; 1968 Nov; 17(5):749-59. PubMed ID: 5687272
    [No Abstract]   [Full Text] [Related]  

  • 16. [Breakdown of an organophosphorus cholinesterase inhibitor in animal tissues].
    Rozengart VI; Chingisova RA; Shmeleva VG; Shcehrbak IG
    Vopr Med Khim; 1971; 17(3):266-70. PubMed ID: 5099488
    [No Abstract]   [Full Text] [Related]  

  • 17. Activation of phosphorothionate pesticides based on a cytochrome P450 BM-3 (CYP102 A1) mutant for expanded neurotoxin detection in food using acetylcholinesterase biosensors.
    Schulze H; Schmid RD; Bachmann TT
    Anal Chem; 2004 Mar; 76(6):1720-5. PubMed ID: 15018574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic reduction of O,O-(4-nitrophenyl) phosphorothioate, O,O-diethyl O-(4-nitrophenyl) phosphate, and O-ethyl O-(4-nitrophenyl) benzene thiophosphonate by tissues from mammals, birds and fishes.
    Hitchcock M; Murphy SD
    Biochem Pharmacol; 1967 Sep; 16(9):1801-11. PubMed ID: 6053222
    [No Abstract]   [Full Text] [Related]  

  • 19. Degradation and activation of parathion analogs by microsomal enzymes.
    Nakatsugawa T; Tolman NM; Dahm PA
    Biochem Pharmacol; 1968 Aug; 17(8):1417-28. PubMed ID: 4386232
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxidative bioactivation of methamidophos insecticide: synthesis of N-hydroxymethamidophos (a candidate metabolite) and its proposed alternative reactions involving N-->O rearrangement or fragmentation through a metaphosphate analogue.
    Mahajna M; Casida JE
    Chem Res Toxicol; 1998 Jan; 11(1):26-34. PubMed ID: 9477223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.